$$C = \log_2 \left[1 + \exp\left(\frac{\alpha - h}{1 - \alpha}\right) \right]$$

Example 2.23

If π_1 and π_2 are channel matrices of discrete memoryless channels k_1 and k_2 respectively, the sum of k_1 and k_2 is defined as the channel whose matrix is

$$\begin{bmatrix} \pi_1 & 0 \\ 0 & \pi_2 \end{bmatrix}$$

Thus the sum channel may be operated by choosing one of the individual channels and transmitting a digit through it. The input or output symbol always identifies the particular channel used. If C_i is the capacity of K_i , i=1, 2 and C is the capacity of the sum show that

$$2C = 2^{c_1} + 2^{c_2}.$$

Solution

Let the input alphabet of k_1 and k_2 be x_1, \ldots, x_r and x_{r+1}, \ldots, x_M respectively; let the output alphabets of k_1 and k_2 be y_1, \ldots, y_s and y_{s+1}, \ldots

 y_{N} . If p(x) is any input distribution, and $P = \sum_{i=1}^{r} p(x_{i})$, then

$$\begin{split} H(X) &= -\sum_{i=1}^{M} p(x_i) \log p(x_i) \\ &= -p \log p - (1-p) \log(1-p) + pH_1(X) + (1-p) H_2(X) \\ &\quad \text{(By grouping axiom)} \end{split}$$

where
$$H_1(X) = -\sum_{i=1}^r \frac{p(x_i)}{p} \log \frac{p(x_i)}{p}$$

is the input uncertainity of k, under the distribution

$$\{p(x_i)/p, i = 1, ...r\}$$

and

$$H_2(X) = -\sum_{i=r+1}^{M} \frac{p(x_i)}{1-p} \log \frac{p(x_i)}{1-p}$$

is the input uncertainity of k, under the distribution

$${p(x_i)/(1-p), i=r+1, \ldots M}.$$

[Alternately, H(X) =
$$-\sum_{i=1}^{r} p \frac{p(x_i)}{p} \log \left[\left(\frac{p(x_i)}{p} \right) p \right]$$

$$-\sum_{i=1}^{M} \frac{(1-p)p(x_i)}{(1-p)} \log \left[\frac{p(x_i)}{(1-p)} (1-p) \right]$$

leading to the same expression as above.]

Now,
$$H(X/Y) = -\sum_{i=1}^{M} \sum_{j=1}^{N} p(x_i, y_j) \log p(x_i / y_j)$$

$$= -\sum_{i=1}^{r} \sum_{j=1}^{s} p \frac{p(x_i)}{p} p(y_j / x_i) \log p(x_i / y_j)$$

$$-\sum_{i=r+1}^{M} \sum_{j=s+1}^{N} (1-p) \left[\frac{p(x_i)}{1-p} \right] p(y_j / x_i) \log p(x_i / y_j)$$

Now if $1 \le i \le r$, $1 \le j \le s$, the conditional probability.

$$p(x_i/y_j) = \frac{p(x_i)p(y_j/x_i)}{p(y_j)} = \frac{p[p(x_i)/p]p(y_j/x_i)}{p\sum_{i=1}^{M} \frac{p(x_i)}{p}.p(y_j/x_i)}$$
$$= p\{X_i = x_i/Y_i = y_i\}$$

that is, the conditional probability that the input of k_1 is x_i given that the output of k_1 is y_i , under the distribution $\{p(x_i)/p, i = 1, 2, ..., r\}$.

Thus

$$H(X/Y) = pH_1(X/Y) + (1-p)H_2(X/Y)$$

and

$$I(X; Y) = H(X) - H(X/Y).$$

Therefore,
$$H(X/Y) = H(p, 1-p) + p I_1(X; Y) + (1-p) I_2(X; Y)$$

where the subscript *i* denotes that the indicated quantity is calculated for k_i under the appropriate input distribution. For a given p, we are completely free to choose the probabilities $p(x_i)/p$, $i = 1, \ldots r$ and $p(x_i)/(1-p)$, $i = r+1, \ldots M$.

We can do no better than to choose the probabilities so that

$$I_1(X;Y) = C_1, I_2(X;Y) = C_2.$$

Thus it remains to maximize

$$H(p, 1-p) + pC_1 + (1-p)C_2$$

Differentiating we obtain,

$$-1 - \log p + 1 + \log(1 - p) + C_1 - C_2 = 0$$

$$p = \frac{2^{C_1}}{2^{C_1} + 2^{C_2}}$$

Hence,
$$C = H\left(\frac{2^{C_1}}{2^{C_1} + 2^{C_2}}, \frac{2^{C_1}}{2^{C_1} + 2^{C_2}}\right) + \frac{C_1 2^{C_1} + C_2 2^{C_2}}{2^{C_1} + 2^{C_2}}$$

$$= \frac{2^{C_1}}{2^{C_1} + 2^{C_2}} log(2^{C_1} + 2^{C_2}) + \frac{2^{C_2}}{2^{C_1} + 2^{C_2}} log(2^{C_1} + 2^{C_2})$$

Therefore $C = \log (2^{c_1} + 2^{c_2})$

Example 2.24

Evaluate the capacity of the channel whose matrix is given as

$$\begin{bmatrix} 1-\beta & \beta & 0 \\ \beta & 1-\beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution

The given channel matrix is

$$\begin{bmatrix} 1-\beta & \beta & 0 \\ \beta & 1-\beta & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}$$

where

$$\pi_1 = \begin{bmatrix} 1 - \beta & \beta \\ \\ \beta & 1 - \beta \end{bmatrix}$$

$$\pi_2 = [1],$$

referring to the previous problem.

We have,

 $2^{c} = 2^{c_1} + 2^{c_2}$

Here,

 $C_1 = \log m - h$

 $= \log_2 2 - H(\beta, 1 - \beta)$

 $C_1 = 1 - H(\beta, 1 - \beta)$

 $C_{2} = 0$

Therefore,

$$2^{C} = 2^{1-H(\beta, 1-\beta)} + 2^{0}$$

$$C = log [1 + 2^{1-H(\beta, 1-\beta)}]$$

Example 2.25

Evaluate the channel capacity of the channel whose matrix is given to be

$$\begin{bmatrix} \frac{1-p}{2} & \frac{1-p}{2} & \frac{p}{2} & \frac{p}{2} \\ \\ \frac{p}{2} & \frac{p}{2} & \frac{1-p}{2} & \frac{1-p}{2} \end{bmatrix}$$

Solution

or

This is a symmetric channel.

Channel capacity
$$C = \log_2 4 + p \log \frac{1}{2} p + (1-p) \log \frac{1}{2} (1-p)$$

 $C = 1 - H(p, 1-p)$
= capacity of a binary symmetric channel with error probability p.

Example 2.26

Evaluate the channel capacity of the channel whose matrix is

$$\begin{bmatrix}
1-p & p & 0 \\
0 & p & 1-p
\end{bmatrix}$$

Solution

This is a Binary erasure channel (BEC).

If
$$p(X=0) = \alpha,$$
 then
$$H(X) = H(\alpha, 1 - \alpha)$$

$$H(X/Y) = p(erase) \ H(X/Y = erase)$$

$$= p. \ H(\alpha, 1 - \alpha)$$
 Thus
$$I(X; Y) = (1 - p) \ H(\alpha, 1 - \alpha),$$

which is a maximum for $\alpha = \frac{1}{2}$.

Therefore

$$C = 1 - p$$
.

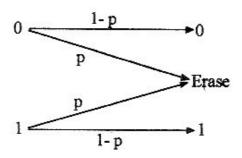


Fig. 2.16 Illustration of channels for problem 2.26

Example 2.27

A signal is bandlimited to 5 KHz, sampled at a rate of 10, 000 samples per second, and quantized to 4 levels such that the sampled value can take values 0, 1, 2, 3 with probability p, p, (1/2) - p, (1/2) - p respectively and the channel is characterized by the transition probability matrix

$$P = \{P_{ij}\} = P(X = x_i / Y = y_j]$$
$$Y = i$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

Find the capacity of the channel.

Solution

The channel model is shown below.

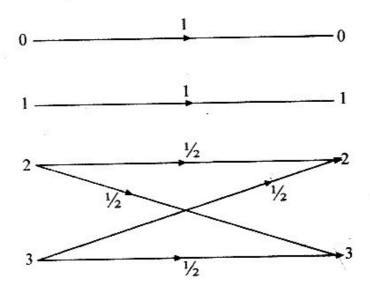


Fig. 2.17 Illustration of channels for problem 2.27

$$P(X = 0) = p$$

 $P(X = 1) = p$
 $P(X = 2) = \frac{1}{2} - p$
 $P(X = 3) = \frac{1}{2} - p$

$$H(X) = -\sum_{i=0}^{3} P(X = x_i) \log_2 [p(X = x_i)]$$

$$= -2p \log_2(p) + 2\left(\frac{1}{2} - p\right) \log_2\left(\frac{1}{2} - p\right)$$

$$P(y = 0) = P(Y = 0 / X = 0) P(x = 0) + P(Y = 0 / X = 1) P(X = 1)$$

$$+ P(Y = 0 / X = 2) P(X = 2) + P(Y = 0 / X = 3) P(X = 3)$$

$$= 1(p) + 0\left(\frac{1}{2} - p\right) + 0\left(\frac{1}{2} - p\right) + 0(p) = p$$

Similarly,

$$P(Y = 1) = p$$

 $P(Y = 2) = P(Y = 2 / X = 0) P(X = 0) + P(Y = 2 / X = 1) P(X = 1)$

$$+ P(Y = 2 / X = 2) P(X = 2) + P(Y = 2 / X = 3) P(X = 3)$$

$$= 0.p + 0 \left(\frac{1}{2} - p\right) + \frac{1}{2} \left(\frac{1}{2} - p\right) + \left(\frac{1}{2} - p\right) \frac{1}{2}$$

$$= \frac{1}{2} - p$$

Similarly,

Similarly,

$$P(Y = 3) = \left(\frac{1}{2} - p\right)$$

$$P(X = 0, Y = 0) = P(X = 0 / Y = 0) P(Y = 0)$$

$$= 1(p) = p$$

$$P(X = 0, Y = 1) = P(X = 0 / Y = 1) P(Y = 1)$$

$$= 0(p) = 0$$

$$P(X = 0, Y = 2) = P(X = 0 / Y = 0) P(Y = 2)$$

$$= 0 \left(\frac{1}{2} - p\right) = 0$$

$$P(X = 0, Y = 3) = 0$$

$$P(X = 1, Y = 0) = 0$$

$$P(X = 1, Y = 2) = 0$$

$$P(X = 1, Y = 3) = 0$$

$$P(X = 2, Y = 0) = 0$$

$$P(X = 2, Y = 2) = 0 = \frac{1}{2} \left(\frac{1}{2} - p \right)$$

P(X = 2, Y = 1) = 0

$$P(X = 2, Y = 3) = 0 = \frac{1}{2} \left(\frac{1}{2} - p \right)$$

$$P(X = 3, Y = 0) = 0$$

$$P(X = 3, Y = 1) = 0$$

$$P(X = 3, Y = 2) = \frac{1}{2} \left(\frac{1}{2} - p \right)$$

$$P(X = 3, Y = 3) = \frac{1}{2} \left(\frac{1}{2} - p \right)$$

Therefore

$$\begin{split} H(X/Y) &= -p \, log_2(1) - p \, log_2(1) - \frac{1}{2} \left(\frac{1}{2} - p\right) \, log_2\left(\frac{1}{2}\right) \\ &- \frac{1}{2} \left(\frac{1}{2} - p\right) \, log_2\left(\frac{1}{2}\right) - \frac{1}{2} \left(\frac{1}{2} - p\right) \, log_2\left(\frac{1}{2}\right) \\ &- \frac{1}{2} \left(\frac{1}{2} - p\right) \, log_2\left(\frac{1}{2}\right) \\ &= 2 \left(\frac{1}{2} - p\right) \\ &f_s = 10 \, \text{ kHz}. \\ C &= \max_p \, \left[H(X) - H(X/Y) \right].10^4 \\ &= \max_p \left[\left[-2p \log_2 p - 2 \left(\frac{1}{2} - p\right) \log \left(\frac{1}{2} - p\right) - 2 \left(\frac{1}{2} - p\right) \right].10^4 \right] \end{split}$$

$$\frac{\partial C}{\partial p} = \left\{ -2\log_2(p) - \frac{2p}{p} + 2\log_2\left(\frac{1}{2} - p\right) + \frac{2\left(\frac{1}{2} - p\right)}{\left(\frac{1}{2} - p\right)} + 2 \right\} \cdot 10^4 = 0$$

which on simplification gives

$$p = 1/3$$

Therefore,

$$C = \left[-\frac{2}{3} \log_2 \frac{1}{3} - 2 \left(\frac{1}{2} - \frac{1}{3} \right) \log_2 \left(\frac{1}{2} - \frac{1}{3} \right) - 2 \left(\frac{1}{2} - \frac{1}{3} \right) \right] \cdot 10^4$$

 $C = [\log_2 3] 10^4 \text{ bits/sec.}$

Example 2.28

If the received signal is given by

$$Y(t) = X(t) + N(t)$$

and X and Y are jointly Gaussian and the joint p.d.f. is given by

$$f_{xy}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} exp\left\{\frac{-1}{2(1-\rho^2)}\left[\left(\frac{x}{\sigma_x}\right)^2 - 2\frac{\rho_{xy}}{\sigma_x\sigma_y} + \left(\frac{y}{\sigma_y}\right)^2\right]\right\}$$

where

$$\rho = \frac{E(XY)}{\sigma_x \sigma_y}, \qquad \sigma_x^2 = E(X^2), \quad \sigma_y^2 = E(y^2)$$

and X(t) and N(t) are independent random processes. Find I(X; Y) and C.

Solution

The marginal density of X is given by

$$f_{x}(x) = \int_{-\infty}^{\infty} f(x,y) dy = \frac{1}{\left(2\pi\sigma_{x}^{2}\right)^{\frac{1}{2}}} \exp\left(\frac{-x^{2}}{2\sigma_{x}^{2}}\right).$$

$$f_y(y) = \frac{1}{(2\pi\sigma_y^2)^{\frac{1}{2}}} \exp\left(\frac{-y^2}{2\sigma_y^2}\right)$$

$$\frac{f_{xy}(x,y)}{f_{x}(x)f_{y}(y)} = \frac{1}{(1-\rho_{1}^{2})^{1/2}} \exp \left\{ \frac{-\rho_{1}^{2}}{2(1-\rho_{1})^{2}} \left[\left(\frac{x}{\sigma_{x}^{2}} \right)^{2} - \frac{2xy}{\rho_{1}\sigma_{x}\sigma_{y}} + \left(\frac{y}{\sigma_{y}} \right)^{2} \right]$$

where

$$\rho_1^2 = \frac{\sigma_x^2}{\sigma_v^2}$$

$$I(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{xy}(x, y) \log \frac{f_x(x) f_x(y)}{f_{xy}(x, y)} dxdy$$

$$= -\frac{1}{2}\log_{e}\left(1-\rho_{1}^{2}\right)\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{xy}(x,y)\,dxdy$$

$$-\frac{{\rho_1}^2}{2\left(1-{\rho_1}^2\right)}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}f_{xy}(x,y)\left[\left(\frac{x}{\sigma_x}\right)^2-\frac{2xy}{\rho_1\sigma_x\sigma_y}+\left(\frac{y}{\sigma_y}\right)^2\right]dxdy$$

Therefore,

$$I(X, Y) = -\frac{1}{2}\log_e(1-\rho_1^2)$$

Since X and N are independent,

$$\sigma_{y}^{2} = \sigma_{x}^{2} + \sigma_{N}^{2}$$

$$\rho_{1}^{2} = \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}} = \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{N}^{2}}$$

Therefore,

$$I(X,Y) = -\frac{1}{2}\log_e\left(\frac{\sigma_N^2}{\sigma_x^2 + \sigma_N^2}\right)$$
$$= \frac{1}{2}\log_e\left(\frac{\sigma_x^2 + \sigma_N^2}{\sigma_N^2}\right)$$
$$= \frac{1}{2}\log_e\left(1 + \frac{\sigma_x^2}{\sigma_N^2}\right)$$

Putting, $\sigma_x^2 = S$, $\sigma_N^2 = N$, noise density, we have

$$I(X, Y) = \frac{1}{2} \log_e \left(1 + \frac{S}{N} \right) \text{ nats/sample}$$

$$C = \max_{P(X)} I(X, Y). f_s$$

$$= \frac{f_s}{2} \log_e \left(1 + \frac{S}{N_0} \right)$$

$$C = B \log_e \left(1 + \frac{S}{N_0} \right) \qquad \left(f_s = \frac{1}{T_s} = 2B \right)$$

where 2B is the bandwidth of the power spectral density of the random signal X(t) and $N_0 = \eta B$ when the two-sided power spectral density of the noise is $\eta/2$ watts/Hz.

Therefore,
$$C = B \log \left(1 + \frac{S}{\eta B}\right) \text{ nats/sec.}$$

This equation is known as Shannon-Hartley theorem.

Example 2.29

A binary input-output channel is shown in fig. 2.18.

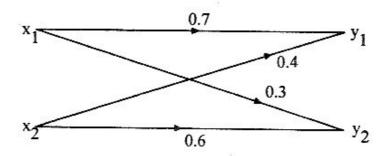


Fig. 2.18 Binary input-output channel

Given that the transition probability matrix is

$$P(Y/X) = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

and the input probabilities are $p(x_1) = 0.5$, $p(x_2) = 0.5$. Calculate the output probability matrix P(Y) and the joint probability matrix P(X, Y).

Solution

$$[P(Y)] = [P(X)] [P(Y/X)]$$

$$[P(Y)] = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.55 & 0.45 \end{bmatrix}$$

If P(X) is written as a diagonal matrix, then

$$[P(X, Y)] = [P(X)] [P(Y/X)]$$

$$= \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

$$[P(X, Y)] = \begin{bmatrix} 0.35 & 0.15 \\ 0.2 & 0.3 \end{bmatrix}$$

Review Questions

- 2.1 What do you mean by memoryless channel?
- 2.2 Define a discrete channel.
- 2.3 When is a discrete channel said to be "memoryless"?
- 2.4 Define Mutual information / Transinformation
- 2.5 Distinguish between noisy reception and perfect reception.
- 2.6 Name the different types of channels.
- 2.7 Define channel matrix D.
- 2.8 What is a lossless channel?
- 2.9 Define a deterministic channel.
- 2.10 What is a noiseless channel?
- 2.11 When is a channel said to be useless?
- 2.12 Define a symmetric channel.
- 2.13 What do you understand by BSC and BEC.
- 2.14 Define channel capacity.
- 2.15 What is the channel capacity of (i) lossless channel (ii) Deterministic channel (iii) Noiseless channel (iv) Symmetric channel.

- 2.16 How do you find the channel capacity of unsymmetric channels?
- 2.17 What is the channel capacity of (i) BEC (ii) BSC.
- 2.18 Write down Fano's Inequality.
- 2.19 State the Shannon's Fundamental theorem / Noisy coding Theorem.
- 2.20 What do you mean by a gaussian channel?
- 2.21 How do you find the capacity of a gaussian channel?
- 2.22 State Shannon-Hartely's Law.
- 2.23. Define information rate of the source.
- 2.24 Given a channel matrix, how do you find the channel capacity?
- 2.25 State the applications of coding Techniques.
- 2.26 State the advantages of coding techniques.
- 2.27 Distinguish between the different types of channels.
- 2.28 How do you obtain the channel capacity of a symmetric channel.
- 2.29 Define a stochastic matrix.
- 2.30 Distinguish between discrete and continuous type channels.