ERROR-CONTROL
| CODING

This chapter is the natural sequel to the preceding chapter on Shannon’s information
theory. In particular, in this chapter we present error-control coding techniques that
provide different ways of implementing Shannon’s channel-coding theorem. Each error-
control coding technique involves the use of a channel encoder in the transmitter and a
decoding algorithm in the receiver.

The error-control coding techniques described herein include the following important
classes of codes:

¥ Linear block codes.
B Cyclic codes.
¥ Convolutional codes. ’

¥ Compound codes exemplified by turbo codes and low-density parity-check codes, and
their irregular variants.

E 10.1 Introduction

The task facing the designer of a digital communication system is that of providing a cost-
effective facility for transmitting information from one end of the system at a rate and a
level of reliability and quality that are acceptable to a user at the other end. The two key
system parameters available to the designer are transmitted signal power and channel
bandwidth, These two parameters, together with the power spectral density of receiver
noise, determine the signal energy per bit-to-noise power spectral density ratio E,/Np. In
Chapter 6, we showed that this ratio uniquely determines the bit error rate for a particular
modulation scheme. Practical considerations usually place a limit on the value that we can
assign to E,/N,. Accordingly, in practice, we often arrive at a modulation scheme and find
that it is not possible to provide acceptable data quality (i.e., low enough error perfor-
mance). For a fixed E;/Ny, the only practical option available for changing data quality
from problematic to acceptable is to use error-control coding.

Another practical motivation for the use of coding is to reduce the required E,/No
for a fixed bit error rate. This reduction in E,/N, may, in turn, be exploited to reduce the
required transmitted power or reduce the hardware costs by requiring a smaller antenna
size in the case of radio communications.

Error control® for data integrity may be exercised by means of forward error cor-
rection {FEC). Figure 10.14 shows the model of a digital communication system using such
an approach. The discrete source generates information in the form of binary symbols.
The channel encoder in the transmitter accepts message bits and adds redundancy accord-
ing to a prescribed rule, thereby producing encoded data at a higher bit rate. The channel

626

10.1 Introduction 627

Discrete channel

e e e e e q
| |
= 1
Discrete Channel Waveform { Channel
source encoder | Madulator channel Detector | decoder |] USr
| i
! <T !
__________________________ |
Noise ’
@
Discrete ‘ Waveform
source Encoder/modutator channel Detecter/decoder User
Noise

)

FIGURE 10.1 Simplified models of digital communication system. (@) Coding and modulation
performed separately. (b) Coding and modulation combined.

decoder in the receiver exploits the redundancy to decide which message bits were actually
transmitted. The combined goal of the channel encoder and decoder is to minimize the
effect of channel noise. That is, the number of errors between the channel encoder input
(derived from the source) and the channel decoder output (delivered to the user) is
minimized.

For a fixed modulation scheme, the addition of redundancy in the coded messages
implies the need for increased transmission bandwidth. Moreover, the use of error-control
coding adds complexity to the system, especially for the implementation of decoding op-
erations in the receiver. Thus, the design trade-offs in the use of error-control coding to
achieve acceptable error performance include considerations of bandwidth and system
complexity.

There are many different error-correcting codes {with roots in diverse mathematical
disciplines) that we can use. Historically, these codes have been classified into block codes
and convolutional codes. The distinguishing feature for this particular classification is the
presence or absence of memory in the encoders for the two codes.

To generate an (n, k) block code, the channel encoder accepts information in suc-
cessive k-bit blocks; for each block, it adds n» — k redundant bits that are algebraically
related to the k message bits, thereby producing an overall encoded block of # bits, where
n > k. The #n-bit block is called a code word, and # is called the block length of the code.
The channel encoder produces bits at the rate Ry = (#/k)R., where R, is the bit rate of the
information source. The dimensionless ratio » = k/u is called the code rate, where
0 < 7 < 1. The bit rate Ry, coming out of the encoder, is called the channel data rate.
Thus, the code rate is a dimensionless ratio, whereas the data rate produced by the source
and the channel data rate are both measured in bits per second.

In a convolutional code, the encoding operation may be viewed as the discrete-
time convolution of the input sequence with the impulse response of the encoder. The
duration of the impulse response equals the memory of the encoder. Accordingly, the
encoder for a convolutional code operates on the incoming message sequence, using

628

CHAPTER 10 8 ERROR-CONTROL CODING

a “sliding window” equal in duration to its own memory. This, in turn, means that i,
a convolutional code, unlike a block code, the channel encoder accepts message bits as 5
continuous sequence and thereby generates a continuous sequence of encoded bits 4
a higher rate.

In the model depicted in Figure 10.1a, the operations of channel coding and mody-
lation are performed separately in the transmitter; likewise for the operations of detection
and decoding in the receiver. When, however, bandwidth efficiency is of major concery
the most effective method of implementing forward error-control correction coding is t(;
combine it with modulation as a single function, as shown in Figure 10.15. In such ap
approach, coding is redefined as a process of imposing certain patierns on the transmitred
signal.

AUTOMATIC-REPEAT REQUEST

Feed-forward error correction (FEC) relies on the controlled use of redundancy in the
transmitted code word for both the detection and correction of errors incurred during
the course of transmission over a noisy channel. Irrespective of whether the decoding of
the received code word is successful, no further processing is performed at the receiver.
Accordingly, channel coding techniques suitable for FEC require only a ore-way link he-
tween the transmitter and receiver.

There is another approach known as automatic-repeat request (ARQ)* for solving
the error-control problem. The underlying philosophy of ARQ is quite different from that
of FEC. Specifically, ARQ uses redundancy merely for the purpose of error detection. Upon
the detection of an error in a transmitted code word, the receiver requests a repeat trans-
mission of the corrupted code word, which necessitates the use of a return path (e, a
feedback channel). As such, ARQ can be used only on half-duplex or full-duplex links. In
a half-duplex link, data transmission over the link can be made in either direction but not
simultaneously. On the other hand, in a full-duplex link, it is possible for data transmission
to proceed over the link in both directions simultaneously.

A half-duplex link uses the simplest ARQ scheme known as the stop-and-wait strat-
egy. In this approach, a block of message bits is encoded into a code word and transmitted
over the channel. The transmitter then stops and waits for feedback from the receiver. The
feedback signal can be acknowledgment of a correct receipt of the code word or a request
for transmission of the code word because of an error in its decoding. In the latter case,
the transmitter resends the code word in question before moving onto the next block of
message bits. ’

The idling problem in stop-and-wait ARQ results in reduced data throughput, which
is alleviated in another type of ARQ known as continuzous ARQ with pullback. This second
strategy uses a full-duplex link, thereby permitting the receiver to send a feedback signal
while the transmitter is engaged in sending code words over the forward channel. Specif-
ically, the transmitter continues to send a succession of code words until it receives a
request from the receiver (on the feedback channel) for a retransmission. At that point,
the transmitter stops, pulls back to the particular code word that was not decoded correctly
by the receiver, and retransmits the complete sequence of code words starting with the
corrupted one.

In a refined version of continuous ARQ known as the continuous ARQ with selective
repeat, data throughout is improved further by only retransmitting the code word that.
was received with detected errors. In other words, the need for retransmitting the success-
fully received code words following the corrupted code word is eliminated.

j 10.2

10.2 Discrete-Memoryless Channels 629

The three types of ARQ described here offer trade-offs of their own between the
need for a half-duplex or full-duplex link and the requirement for efficient use of com-
munication resources. In any event, they all rely on two premises:

» Error detection, which makes the design of the decoder relatively simple,

> Noiseless feedback channel, which is not a severe restriction because the rate of
information flow over the feedback channel is typically quite low.

For these reasons, ARQ is widely used in computer-communication systems.

Nevertheless, the fact that FEC requires only one-way links for its operation makes
the FEC much wider in application than ARQ. Moreover, the increased decoding com-
plexity of FEC due to the combined need for error detection and correction is no longer
a pressing practical issue because the decoder usually lends itself to microprocessor or
VLSI implementation in a cost-effective manner.

Discrete-Memoryless Channels

Returning to the model of Figure 10.1a, the waveform channel is said to be memoryless
if the detector output in a given interval depends only on the signal transmitted in that
interval, and not on any previous transmission. Under this condition, we may model the
combination of the modulator, the waveform channel, and the detector as a discrete
memoryless channel. Such a channel is completely described by the set of transition prob-
abilities p(|7), where i denotes a modulator input symbol, j denotes a demodulator output
symbol, and p(7|i) denotes the probability of receiving symbol j, given that symbol i was
sent. (Discrete memoryless channels were described previously at some length in Section
9.5)

The simplest discrete memoryless channel results from the use of binary input and
binary output symbols. When binary coding is used, the modulator has only the binary
symbols 0 and 1 as inputs. Likewise, the decoder has only binary inputs if binary quan-
tization of the demodulator output is used, that is, a bard decision is made on the demod-
ulator output as to which symbol was actually transmitted. In this situation, we have a
binary symmetric channe| (BSC) with a transition probability diagram as shown in Figure
10.2. The binary symmetric channel, assuming a channel noise modeled as additive white
Gaussian noise (AWGN) channel, is completely described by the transition probability p.
The majority of coded digital communication systems employ binary coding with hard-
decision decoding, due to the simplicity of implementation offered by such an approach.
Hard-decision decoders, or algebraic decoders, take advantage of the special algebraic

Symboi 1 Symbol 1

Symbol O Symboi O
1-p

FIGURE 10.2 Transition probability diagram of binary symmetric channel.

630

CHAPTER 10 ERROR-CONTROL CODING

£E 6,08 + wla) T Uniform
! (%) f dt
Q

W multilevel

quantizer
@ \/‘T (271
b,(8) = [cos(2m

(@
Output
by .
by - Symbe! 1 transmitted
O
bl VE
b,
2 Input
- b5
— bs
by Symbol 2 transmitted £Z
o
- —VE
(b}

FIGURE 10.3 Binary input Q-ary-output discrete memoryless channel. (a) Receiver for binary
phase-shift keying. (b) Transfer characteristic of multilevel quantizer. (¢) Channel transition prob-
ability diagram. Parts (b) and (c) are illustrated for eight levels of quantization.

structure that is built into the design of channe! codes to make the decoding relatively easy
to perform.

The use of hard decisions prior to decoding causes an irreversible loss of information
in the receiver. To reduce this loss, soft-decision coding is used. This is achieved by in-
cluding a multilevel quantizer at the demodulator output, as illustrated in Figure 10.34
for the case of binary PSK signals. The input—output characteristic of the quantizer is
shown in Figure 10.35. The modulator has only the binary symbols 0 and 1 as inputs, but
the demodulator output now has an alphabet with Q symbols. Assuming the use of the
quantizer as described in Figure 10.35, we have Q = 8. Such a channel is called a binary
input Q-ary output discrete memoryless channel. The corresponding channel transition
probability diagram is shown in Figure 10.3¢. The form of this distribution, and conse-
quently the decoder performance, depends on the location of the representation levels of
the quantizer, which, in turn, depends on the signal level and noise variance. Accordingly,
the demodulator must incorporate automatic gain control if an effective multilevel quan-
tizer is to be realized. Moreover, the use of soft decisions complicates the implementation
of the decoder. Nevertheless, soft-decision decoding offers significant improvement in per-
formance over hard-decision decoding by taking a probabilistic rather than an algebraic
approach. It is for this reason that soft-decision decoders are also referred to as probabi-
listic decoders.

CHANNEL CopING THEOREM REVISITED

In Chapter 9, we established the concept of channel capacity, which, for a discrete
memoryless channel, represents the maximum amount of information transmitted per

10.2 Discrete-Memoryless Channels 631

channel use. The channel coding theorem states that if a discrete memoryless channel has
capacity C and a source generates information at a rate less than C, then there exists a
coding technique such that the output of the source may be transmitted over the channel
with an arbitrarily low probability of symbol error. For the special case of a binary sym-
metric channel, the theorem tells us that if the code rate r is less than the channel capacity
C, then it is possible to find a code that achieves error-free transmission over the channel.
Conversely, it is not possible to find such a code if the code rate 7 is greater than the
channel capacity C.

The channel coding theorem thus specifies the channel capacity C as a fundamental
limit on the rate at which the transmission of reliable (error-free) messages can take place
over a discrete memoryless channel. The issue that matters is not the signal-to-noise ratio,
so long as it is large enough, but how the channel input is encoded.

The most unsatisfactory feature of the channel coding theorem, however, is its non-
constructive nature. The theorem asserts the existence of good codes but does not tell us
how to find them. By good codes we mean families of channel codes that are capable of
providing reliable transmission of information (i.e., at arbitrarily small probability of sym-
bol error) over a noisy channel of interest at bit rates up to a maximum value less than
the capacity of that channel. The error-control coding techniques described in this chapter
provide different methods of designing good codes.

Norarion

The codes described in this chapter are binary codes, for which the alphabet consists only
of symbols 0 and 1. In such a code, the encoding and decoding functions involve the binary
arithmetic operations of modulo-2 addition and multiplication performed on code words
in the code.

Throughout this chapter, we use an ordinary plus sign (+) to denote modulo-2 ad-
dition. The use of this terminology will not lead to confusion because the whole chapter
relies on binary arithmetic. In so doing, we avoid the use of a special symbol @, as we did
in preceding chapters. Thus, according to the notation used in this chapter, the rules for
modulo-2 addition are as follows:

0+0=0
1+0=1
0+1=1
1+1=0
Because 1 + 1 = 0, it follows that 1 = —1. Hence, in binary arithmetic, subtraction is the
same as addition. The rules for modulo-2 multiplication are as follows:
0x0=0
1X0=0
0Xx1=0
1x1=1
Division is trivial in that we have
1+1=1

0+1=

632 CHAPTER 10 ERROR-CONTROL CODING

and division by 0 is not permitted. Modulo-2 addition is the EXCLUSIVE-OR operatioy
in logic, and modulo-2 multiplication is the AND operation.

E 10.3 Liunear Block Codes

A code is said to be linear if any two code words in the code can be added in moduly-)
arithmetic to produce a third code word in the code. Consider then an (n, k) linear block
code, in which & bits of the 1 code bits are always identical to the message sequence to be
transmitted. The 7 — k bits in the remaining portion are computed from the message bits
in accordance with a prescribed encoding rule that determines the mathematical structure
of the code. Accordingly, these # — k bits are referred to as generalized parity check bigs
or simply parity bits. Block codes in which the message bits are transmitted in unaltered
form are called systematic codes. For applications requiring both error detection and error
correction, the use of systematic block codes simplifies implementation of the decoder.

Let g, #11, + - . , Mg_q constitute a block of & arbitrary message bits. Thus we have
2F distinct message blocks. Let this sequence of message bits be applied to a linear block
encoder, producing an #-bit code word whose elements are denoted by co, c1, ..., ¢,
Let by, by, . . ., b,__1 denote the (n — k) parity bits in the code word. For the code to
possess a systematic structure, a code word is divided into two parts, one of which is
occupied by the message bits and the other by the parity bits. Clearly, we have the option
of sending the message bits of a‘code word before the parity bits, or vice versa. The former
option is illustrated in Figure 10.4, and its use is assumed in the sequel.

According to the representation of Figure 10.4, the (» — k) left-most bits of a code
word are identical to the corresponding parity bits, and the & right-most bits of the code

word are identical to the corresponding message bits. We may therefore write
b, - i=0,1,...,n~k—1

G=17 T (10.1)
it hs i=n—kn—k+1,...,n-1

The (n — k) parity bits are linear sums of the k message bits, as shown by the generalized
relation
b; = pomie + pymy + 0+ Pro1Men (10.2)
where the coefficients are defined as follows:
_ {1 if b; depends on m;
i

0 otherwise

(10.3)

The coefficients p;; are chosen in such a way that the rows of the generator matrix are
linearly independent and the parity equations are unigue.

The system of Equations (10.1) and (10.2) defines the mathematical structure of the
(n, k) linear block code. This system of equations may be rewritten in a compact form

bay by, - Bygmy L T

Parity bits Message bits

FIGURE 10.4 Structure of systematic code word.

10.3 Linear Block Codes 633

using matrix notation. To proceed with this reformulation, we define the 1-by-k message
vector, or information vector, m, the 1-by-(n — k) parity vector b, and the 1-by-» code
vector c as follows:

m = [m09 My, ... » mlz~1] (104)
b = [bO’ bl’ LR] bn-—}afll (105)
Call C TR | (10.6)

Note that all three vectors are 70w vectors. The use of row vectors is adopted in this chapter
for the sake of being consistent with the notation commonly used in the coding literature.
We may thus rewrite the set of simultaneous equations defining the parity bits in the
compact matrix form:

b = mP (10.7)
where P is the k-by-(n — k) coefficient matrix defined by
Poo Por r DPop—n-1

P10 Pu "t Pip—k—1

P = (10.8)

Pe-10 Pe-11 **° DPhetp—k-1

where p;is 0 or 1.
From the definitions given in Equations (10.4)~(10.6), we see that ¢ may be expressed
as a partitioned row vector in terms of the vectors m and b as follows:

¢ = [bim] (10.9)

Hence, substituting Equation (10.7) into Equation (10.9) and factoring out the common
message vector m, we get

¢ =mP:I] (10.10)
where I, is the k-by-k identity matrix:
‘ 0
I = O l Y (10.11)
0 0 1
Define the k-by-n generator matrix
G =[P:L] (10.12)

The generator matrix G of Equation (10.12) is said to be in the canonical form in that its
k rows are linearly independent; that is, it is not possible to express any row of the matrix
G as a linear combination of the remaining rows. Using the definition of the generator
matrix G, we may simplify Equation (10.10) as

¢ = mG (10.13)

The full set of code words, referred to simply as zhe code, is generated in accordance
with Equation (10.13) by letting the message vector m range through the set of all 2%
binary k-tuples (1-by-k vectors). Moreover, the sum of any two code words is another

634

CHAPTER 10 & ERROR-CONTROL CODING

code word. This basic property of linear block codes is called closure. To prove its validity,
consider a pair of code vectors ¢;and ¢; corresponding to a pair of message vectors m; and
m;, respectively. Using Equation (10.13) we may express the sum of ¢; and c; as

¢+ ¢ =mG+mG
= (m; + m)G

The modulo-2 sum of m; and m; represents a new message vector. Correspondingly, the
modulo-2 sum of ¢; and c; represents a new code vector.

There is another way of expressing the relationship between the message bits and
parity-check bits of a linear block code. Let H denote an {n — k)-by-# matrix, defined as

H = [I,_;:P7 (10.14)
where PTis an (n — k)-by-k matrix, representing the transpose of the coefficient matrix P,

and I,_, is the (n — k)-by-(n — k) identity matrix. Accordingly, we may perform the
following multiplication of partitioned matrices:

PT
HGT = [I,.} PTJ[]
L
=P+ P*

where we have used the fact that multiplication of a rectangular matrix by an identity
matrix of compatible dimensions leaves the matrix unchanged. In modulo-2 arithmetic,
we have PT + PT = 0, where 0 denotes an (7 — k)-by-k null matrix (i.e., a matrix that has
zeros for all of its elements). Hence,

HGT =0 (10.15)

Equivalently, we have GHT = 0, where 0 is a new null matrix. Postmultiplying both sides
of Equation (10.13) by HT, the transpose of H, and then using Equation (10.15), we get

cHT = mGH”
=0

The matrix H is called the parity-check matrix of the code, and the set of equations spec-
ified by Equation (10.16) are called parity-check equations.

The generator equation (10.13) and the parity-check detector equation (10.16) are
basic to the description and operation of a linear block code. These two equations are
depicted in the form of block diagrams in Figure 10.52 and 10.55, respectively.

(10.16)

Generator
matrix
G

Code vector
[

Message vector
m

(a)

Parity-check
matrix
H

Nulf vector
0

Code vector
c

(b

FIGURE 10.5 Block diagram representations of the generator equation (10.13) and the parity-
check equation (10.16).

10.3 Linear Block Codes 635

B ExampiLE 10.1 Repetition Codes

Repetition codes represent the simplest type of linear block codes. In particular, a single mes-
sage bit is encoded into a block of # identical bits, producing an (#, 1) block code. Such a
code allows provision for a variable amount of redundancy. There are only two code words
in the code: an all-zero code word and an all-one code word.

Consider, for example, the case of a repetition code with ¢ = 1 and # = 5. In this case,
we have four parity bits that are the same as the message bit. Hence, the identity matrix I, =
1, and the coefficient matrix P consists of a 1-by-4 vector that has 1 for all of its elements,
Correspondingly, the generator matrix equals a row vector of all 1s, as shown by

G=[1 11 1:1

The transpose of the coefficient matrix P, namely, matrix P7, consists of a 4-by-1 vector that
has 1 for all of its elements. The identity matrix L, consists of a 4-by-4 matrix. Hence, the
parity-check matrix equals

100 0:1
010 0-1
H= :
001 0:1
000 1:1

Since the message vector consists of a single binary symbol, 0 or 1, it follows from Equation
(10.13) that there are only two code words: 00000 and 11111 in the (5, 1) repetition code,
as expected. Note also that HGT = 0, modulo-2, in accordance with Equation (10.15), <&

SYNDROME: DEFINITION AND PROPERTIES

The generator matsix G is used in the encoding operation at the transmitter. On the other
hand, the parity-check matrix H is used in the decoding operation at the receiver. In the
context of the latter operation, let r denote the 1-by-n received vector that results from
sending the code vector ¢ over a noisy channel. We express the vector r as the sum of the
original code vector ¢ and a vector e, as shown by

r=c+e (10.17)

The vector e is called the error vector or error pattern. The ith element of e equals 0 if the
corresponding element of r is the same as that of ¢. On the other hand, the ith element of
e equals 1 if the corresponding element of r is different from that of ¢, in which case an
error is said to have occurred in the #th location. That is, for 7 = 1, 2,...,n, we have

0= {1 if an error has occurred in the ith location (10.18)

0 otherwise

The receiver has the task of decoding the code vector ¢ from the received vector r.
The algorithm commonly used to perform this decoding operation starts with the com-
putation of a 1-by-(n — k) vector called the error-syndrome vector or simply the syn-
drome.® The importance of the syndrome lies in the fact that it depends only upon the
error pattern.

Given a 1-by-n received vector r, the corresponding syndrome is formally defined as

s =rHT (10.19)

Accordingly, the syndrome has the following important properties.

636

CHAPTER 10 & ERROR-CONTROL CODING

Property 1
The syndrome depends only on the error pattern, and not on the transmitted code word,

To prove this property, we first use Equations (10.17) and (10.19), and then Equation
(10.16) to obtain
s = (c + e)HT
cHT + eH" (10.20)
= eHT
Hence, the parity-check matrix H of a code permits us to compute the syndrome s, which
depends only upon the error pattern e. '

Property 2
All error patterns that differ by a code word have the same syndrome.

For %k message bits, there are 2* distinct code vectors denoted as ¢;, i = 0, 1,.. .,
2% — 1. Correspondingly, for any error pattern e, we define the 2k distinct vectors e; as

e=e+c, i=0,1,...,2%-1 (10.21)

The set of vectors {e;, i = 0, 1,. .., 2% — 1] so defined is called a coset of the code. In
other words, a coset has exactly 2* elements that differ at most by a code vector. Thus,
an (n, k) linear block code has 277* possible cosets. In any event, multiplying both sides
of Equation (10.21) by the matrix H”, we get .

eH” = eH” + cHT

et (10.22)

which is independent of the index i. Accordingly, we may state that each coset of the code
is characterized by a unique syndrome.

We may put Properties 1 and 2 in perspective by expanding Equation (10.20). Spe-
cifically, with the matrix H having the systematic form given in Equation (10.14), where
the matrix P is itself defined by Equation {10.8), we find from Equation (10.20) that the
(— k) elements of the syndrome s are linear combinations of the # elements of the error
pattern e, as shown by

So =€y + e pPoo t Cnp-1Pro T 0t EnaPr-10

s1 = e+ e, g P01+ CupraP11 t 0t CuaProan

; " T " (10.23)
Spekel = €nep—1 T €y tPopp-1 T 0 T Ptk

This set of {# — k) linear equations clearly shows that the syndrome contains information
about the error pattern and may therefore be used for error detection. However, it should
be noted that the set of equations is underdetermined in that we have more unknowns
than equations. Accordingly, there is 7o unique solution for the error pattern. Rathet,
there are 2 error patterns that satisfy Equation (10.23) and therefore result in the same
syndrome, in accordance with Property 2 and Equation (10.22). In particular, with 2"
possible syndrome vectors, the information contained in the syndrome s about the error
pattern e is #of enough for the decoder to compute the exact value of the transmitted code
vector. Nevertheless, knowledge of the syndrome s reduces the search for the true error

10.3 Linear Block Codes 637

pattern e from 2" to 2" possibilities. Given these possibilities, the decoder has the task
of making the best selection from the cosets corresponding to s.

2 MiNiMUM DISTANCE CONSIDERATIONS

Consider a pair of code vectors ¢, and ¢, that have the same number of elements. The
Hamming distance dfc,, c,) between such a pair of code vectors is defined as the number
of locations in which their respective elements differ. -

The Hamming weight w(c) of a code vector ¢ is defined as the number of nonzero
elements in the code vector. Equivalently, we may state that the Hamming weight of a
code vector is the distance between the code vector and the all-zero code vector.

The minimum distance d,;, of a linear block code is defined as the smallest Hamming
distance between any pair of code vectors in the code. That is, the minimum distance is
the same as the smallest Hamming weight of the difference between any pair of code
vectors. From the closure property of linear block codes, the sum (or difference) of two
code vectors is another code vector. Accordingly, we may state that the minimum distance
of a linear block code is the smallest Hamming weight of the nonzero code vectors in the
code.

The minimum distance d;, is related to the structure of the parity-check matrix H
of the code in a fundamental way. From Equation (10.16) we know that a linear block
code is defined by the set of all code vectors for which cH = 0, where H is the transpose
of the parity-check matrix H. Let the matrix H be expressed in terms of its columns as
follows:

H=[hy, hy, ..., b, (10.24)

Then, for a code vector ¢ to satisfy the condition ¢cH” = 0, the vector ¢ must have 15 in
such positions that the corresponding rows of H” sum to the zero vector 0, However, by
definition, the number of 1s in a code vector is the Hamming weight of the code vector.
Moreover, the smallest Hamming weight of the nonzero code vectors in a linear block
code equals the minimum distance of the code. Hence, the minimum distance of a linear
block code is defined by the minimum number of rows of the matrix HT whose sum is
equal to the zero vector.

The minimum distance of a linear block code, d,;., is an important parameter of the
code. Specifically, it determines the error-correcting capability of the code. Suppose an
{n, k) linear block code is required to detect and correct all error patterns (over a binary
symmetric channel), and whose Hamming weight is less than or equal to z. That is, if a
code vector ¢; in the code is transmitted and the received vector is T = ¢; + ¢, we require
that the decoder output & = ¢;, whenever the error pattern e has a Hamming weight
w(e) = f. We assume that the 2* code vectors in the code are transmitted with equal
probability. The best strategy for the decoder then is to pick the code vector closest to the
received vector r, that is, the one for which the Hamming distance d(c,, r} is the smallest.
With such a strategy, the decoder will be able to detect and correct all error patterns of
Hamming weight w/(e) =< ¢, provided that the minimum distance of the code is equal to or
greater than 2¢ + 1. We may demonstrate the validity of this requirement by adopting a
geometric interpretation of the problem. In particular, the 1-by-» code vectors and the
1-by-n received vector are represented as points in an #-dimensional space. Suppose that
we construct two spheres, each of radius ¢, around the points that represent code vectors
¢;and ;. Let these two spheres be disjoint, as depicted in Figure 10.64. For this condition
to be satisfied, we require that d(c;, ¢;) = 2¢ + 1. If then the code vector c, is transmitted
and the Hamming distance d(c;, r) < ¢, it is clear that the decoder will pick c; as it is the

638 CHAPTER 10 # ERROR-CONTROL CODING

. @ e.g
i3
(e} (&)

FicURE 10.6 (a) Hamming distance d{(c;, ¢;) = 2t + 1. (b) Hamming distance d(c;, c;) < 2,
The recejved vector is denoted by r.

code vector closest to the received vector r. If, on the other hand, the Hamming distance
d(c;, ;) < 2t, the two spheres around c; and ; intersect, as depicted in Figure 10.6b. Here
we see that if ¢; is transmitted, there exists a received vector r such that the Hamming
distance d{c;, 1) = t, and yet 1 is as close to ¢; as it is to ¢;. Clearly, there is now the
possibility of the decoder picking the vector c;, which is wrong. We thus conclude that g
(n, k) linear block code bas the power to correct all error patterns of weight t or less if,
and only if,

dlc,c) =2t + 1 for all ¢; and ¢;

By definition, however, the smallest distance between any pair of code vectors in a code
is the minimum distance of the code, d,;,. We may therefore state that an (n, k) linear
block code of minimum distance d., can correct up to t errors if, and only if,

t = | Hdp — 1) (10.25)

where | | denotes the largest integer less than or equal to the enclosed quantity. Equation
(10.25) gives the error-correcting capability of a linear block code a quantitative meaning.

& SYNDROME DECODING

We are now ready to describe a syndrome-based decoding scheme for linear block codes.
Let ¢y, €3, . . .« , Cax denote the 2% code vectors of an (7, k) linear block code. Let r denote
the received vector, which may have one of 2" possible values. The receiver has the task
of partitioning the 2" possible received vectors into 2% disjoint subsets @4, >, - . . , Bpxin
such a way that the ith subset 3, corresponds to code vector c; for 1 =< i =t 2%, The received
vector r is decoded into ¢; if it is in the ith subset. For the decoding to be correct, r must
be in the subset that belongs to the code vector c; that was actually sent.

The 2* subsets described herein constitute a standard array of the linear block code.
To construct it, we may exploit the linear structure of the code by proceeding as follows:

1. The 2% code vectors are placed in a row with the all-zero code vector c, as the left-
most element.

2. An error pattern e, is picked and placed under c,, and a second row is formed by
adding e, to each of the remaining code vectors in the first row; it is important that
the error pattern chosen as the first element in a row not have previously appeared
in the standard array.

3. Step 2 is repeated until all the possible error patterns have been accounted for.

Figure 10.7 illustrates the structure of the standard array so constructed. The 2* columns
of this array represent the disjoint subsets @1, D5, . . ., Dox. The 2% rows of the array

10.3 Linear Block Codes 639

c, =0 c; cy ¢; [
[G+ € Cite ... g+Ey ... Bite
8y £, + 85 C3+B ... C+By ... Cp+Bg
g Cy+ e C3tE ... G+ Cof + €
Byn-k by +8pn-k Oyt Bpnek C;+ eyt Bk + Byn-k

FIGURE 10.7 Standard array for an (h, k) block code.

represent the cosets of the code, and their first elements ey, . . ., e+ are called coset
leaders.

For a given channel, the probability of decoding error is minimized when the most
likely error patterns (i.e., those with the largest probability of occurrence) are chosen as
the coset leaders. In the case of a binary symmetric channel, the smaller the Hamming
weight of an error pattern the more likely it is to occur. Accordingly, the standard array
should be constructed with each coset leader having the minimum Hamming weight in its
coset.

We may now describe a decoding procedure for a linear block code:

1. For the received vector r, compute the syndrome s = rHT,

2, Within the coset characterized by the syndrome s, identify the coset leader (i.e., the
error pattern with the largest probability of occurrence); call it e,.

3. Compute the code vector
c=r1+¢ (10.26)
as the decoded version of the received vector r.

This procedure is called syndrome decoding.

B ExamPLE 10.2 Hamming Codes*

Consider a family of (#, k) linear block codes that have the following parameters:
Block length: n=2"-1
Number of message bits: k& =2" —m — 1
Number of parity bits: n—k=m

where m = 3. These are the so-called Hamming codes.

Consider, for example, the (7, 4) Hamming code with # = 7 and & = 4, corresponding
to m = 3. The generator matrix of the code must have a structure that conforms to Equation

(10.12). The following matrix represents an appropriate generator matrix for the (7, 4) Ham-
ming code:

O B e =
=)
o O Rr O
S = O O
= o © o

640

CHAPTER 10 2 ERROR-CONTROL CODING

f TaBLE 10.1 Code words of a (7, 4) Hamming code

Message Weight of Message Weight of
Word Code Word Code Word Word Code Word Code Worg
0000 0000000 0 1000 1101000 3
0001 1010001 3 1001 0111001 4
0010 1110010 4 1010 0011010 3
0011 0100011 -3 1011 1001011 4
0100 0110100 3 1100 1011100 4
0101 1100101 4 1101 0001101 3
0110 1000110 3 1110 0101110 4
0111 0010111 4 1111 1111111 7
The corresponding parity-check matrix is given by
100:10 11
H=|010:1110
0 1:0 1 11
e
L Pr

With £ = 4, there are 2* = 16 distinct message words, which are listed in Table
10.1. For a given message word, the corresponding code word is obtained by using Equa-
tion (10.13). Thus, the application of this equation results in the 16 code words listed in
Table 10.1.

In Table 10.1, we have also listed the Hamming weights of the individual code words
in the (7, 4) Hamming code. Since the smallest of the Hamming weights for the nonzero code
words is 3, it follows that the minimum distance of the code is 3. Indeed, Hamming codes
have the property that the minimum distance d,,;, = 3, independent of the value assigned to
the number of parity bits m.

To illustrate the relation between the minimum distance d.;, and the structure of the
parity-check matrix H, consider the code word 0110100. In the matrix multiplication defined
by Equation (10.16), the nonzero elements of this code word “sift” out the second, third, and
fifth columns of the matrix H yielding

0 0 0 0
11+]0]+]|1]|=]0
0 1 1 0

‘We may perform similar calculations for the remaining 14 nonzero code words. We thus find
that the smallest number of columns in H that sums to zero is 3, confirming the earlier state-
ment that d;, = 3.

An important property of Hamming codes is that they satisfy the condition of Equation
(10.25) with the equality sign, assuming that + = 1. This means that Hamming codes are
single-error correcting binary perfect codes.

Assuming single-error patterns, we may formulate the seven coset leaders listed in the
right-hand column of Table 10.2. The corresponding 2* syndromes, listed in the left-hand
column, are calculated in accordance with Equation (10.20). The zero syndrome signifies no
transmission errors.

Suppose, for example, the code vector [1110010] is sent, and the received vector is

10.4 Cyclic Codes 641

TABLE 10.2 Decoding
table for the (7, 4)
Hamming code defined
in Table 10.1

Syndrame Error Pattern
000 0000000
100 1000000
010 0100000
001 0010000
110 0001000
011 0000100
111 0000010
101 0000001

[1100010] with an error in the third bit. Using Equation (10.19), the syndrome is calculated

to be ’
1 0 07
010
0 01
s = [1100010]]1 1 0
011
1 11
|1 0 1]

=[0 0 1]

From Table 10.2 the corresponding coset leader (i.e., error pattern with the highest probability
of occurrence) is found to be [0010000], indicating correctly that the third bit of the received
vector is erroneous. Thus, adding this error pattern to the received vector, in accordance with
Equation (10.26), yields the correct code vector actually sent. <«

g2 DuAL CoDE

Given a linear block code, we may define its dual as follows. Taking the transpose of both
sides of Equation (10.15), we have

GH” = 0

where H” is the transpose of the parity-check matrix of the code, and 0 is a new zero
matrix. This equation suggests that every (r, k) linear block code with generator matrix
G and parity-check matrix H has a dual code with parameters (n, n — k), generator matrix
H and parity-check matrix G.

! 10.4 Cyclic Codes

Cyclic codes form a subclass of linear block codes. Indeed, many of the important linear
block codes discovered to date are either cyclic codes or closely related to cyclic codes. An

642

CHAPTER 10 2 Error-CoNTroL CODING

advantage of cyclic codes over most other types of codes is that they are easy to encode,
Furthermore, cyclic codes possess a well-defined mathematical structure, which has led ¢,
the development of very efficient decoding schemes for them.

A binary code is said to be a cyclic code if it exhibits two fundamental Properties:

1. Linearity property: The sum of any two code words in the code is also a code word,
2. Cyclic property: Any cyclic shift of a code word in the code is also a code word,
Property 1 restates the fact that a cyclic code is a linear block code (i.e., it can be described
as a parity-check code). To restate Property 2 in mathematical terms, let the #-tuple

{co, €1y - « - 5 Cu1) denote a code word of an (s, k) linear block code. The code is a cyclic
code if the n-tuples

(Cn~13 Cosvens Cn—Z);

(C,,,;_, Crmls s v ey Cn—3)s

(Cl, C2s s 005 Cuay CO)

are all code words in the code.
To develop the algebraic properties of cyclic codes, we use the elements Cos Cly o o .
¢x—1 of a code word to define the code polynomial

dX)=co+ X+ X2+ 4, X1 (10.27)

3

where X is an indeterminate, Naturally, for binary codes, the coefficients are 1s and 0s,
Each power of X in the polynomial c(X) represents a one-bit shift in time. Hence, multi-
plication of the polynomial ¢(X) by X may be viewed as a shift to the right. The key
question is: How do we make such a shift cyclic? The answer to this question is addressed
next. '
Let the code polynomial ¢(X) be multiplied by X’, yielding
Xoo(X) = Xico + exX + +++ + g a X 4 ¢, X
oot g XY
X+ X+ e+ X g, X
.+ C"_lxn+i—1
= CilX o G XL 4 g X+ o X!
+ e+ cn_i_1X"_1

(10.28)

where, in the last line, we have merely rearranged terms. Recognizing, for example, that

€~ + ¢,-; = 0 in modulo-2 addition, we may manipulate the first i terms of Equation
(10.28) as follows:
Xoe(X) = Cos t oo+ Gy XN+ X+ X 4 o, XL (10.29)
F (X 1)+ o+ XX+ 1) ’
Next, we introduce the following definitions:
(4) = R - i~1 i i+1
MX)=¢c,; + + 61X+ X+ X (10.30)

Hoee oo X
AX) = Coi F CpginX + e+ g X (10.31)

10.4 Cyclic Codes 643

Accdrdingly, Equation (10.29) is reformulated in the compact form
XidX) = q(X}X" + 1) + (X) (10.32)

The polynomial ¢?(X) is recognized as the code polynomial of the code word (c,—;, . . . ,
Cu—15 Cgs €15 + + -5 Cs—;—1) ODtained by applying 7 cyclic shifts to the code word (co, ¢55 - - . »
Crits Cu—is » + + » Cn1). Moreover, from Equation (10.32) we readily see that ¢?(X) is the
remainder that results from dividing X’c(X) by (X™ + 1). We may thus formally state the
cyclic property in polynomial notation as follows: If ¢(X) is a code polynomial, then the
polynomial

X)) = X'e(X) mod(X” + 1) (10.33)

is also a code polynomial for any cyclic shift i; the term mod is the abbreviation for modulo.
The special form of polynomial multiplication described in Equation (10.33) is referred to
as multiplication modulo X” + 1. In effect, the multiplication is subject to the constraint
X" = 1, the application of which restores the polynomial X’(X) to order #» ~ 1 for all
i < n. (Note that in modulo-2 arithmetic, X* + 1 has the same value as X" — 1.)

GENERATOR POLYNOMIAL

The polynomial X* + 1 and its factors play a major role in the generation of cyclic codes.

Let g(X) be a polynomial of degree # — & that is a factor of X" + 1; as such, g(X) is the

polynomial of least degree in the code. In general, g(X) may be expanded as follows:
n—k—1

gX)=1+ D> gX' +Xr* (10.34)
i=1

where the coefficient g; is equal to 0 or 1. According to this expansion, the polynomial
g(X) has two terms with coefficient 1 separated by n — k& — 1 terms. The polynomial g(X)
is called the generator polynomial of a cyclic code. A cyclic code is uniquely determined
by the generator polynomial g(X) in that each code polynomial in the code can be ex-
pressed in the form of a polynomial product as follows:

dX) = a(X)g(X) (10.35)

where a{X) is a polynomial in X with degree & — 1. The ¢(X) so formed satisfies the
condition of Equation (10.33) since g(X) is a factor of X™ + 1.

Suppose we are given the generator polynomial g(X) and the requirement is to encode
the message sequence (mg, #1, . . . , 71;1) into an (n, k) systematic cyclic code. That is,
the message bits are transmitted in unaltered form, as shown by the following structure
for a code word (see Figure 10.4):

(b()y bl) e bn—lz—la Mgy Wiy 2 v -y mk—l)

n—k pz‘uity bits k mess;ge bits
Let the message polynomial be defined by
m(X) = mg + m X + -+ + my_ X571 (10.36)
and let
b(X)y=by+b5X+---+ b, X5 (10.37)

644 CHAPTER 10 & ERROR-CONTROL CODING

According to Equation (10.1), we want the code polynomial to be in the form
o«X) = b(X) + X" *m(X) (10.38)
Hence, the use of Equations (10.35) and (10.38) yields
a(X)g(X) = b(X) + X* *m(X)
Equivalently, in light of modulo-2 addition, we may write
’ X m(X) b(X)
g(X) &X)

Equation (10.39) states that the polynomial b(X) is the remainder left over after dividing
X"~*m(X) by g(X).

We may now summarize the steps involved in the encoding procedure for an (n, k)
cyclic code assured of a systematic structure. Specifically, we proceed as follows:

= a(X) + (10.39)

1. Multiply the message polynomial #2(X) by X",
2. Divide X" *m(X) by the generator polynomial g{X), obtaining the remainder b(X).
3. Add b(X) to X" *m(X), obtaining the code polynomial ¢(X).

PARITY-CHECK POLYNOMIAL

An (n, k) cyclic code is uniquely specified by its generator polynomial g{(X) of order
{(n — k). Such a code is also uniquely specified by another polynomial of degree k, which
is called the parity-check polynomial, defined by

k-1

BX)=1+ > bX + X* (10.40)
i=1

where the coefficients #; are 0 or 1. The parity-check polynomial 5{X) has a form similar
to the generator polynomial in that there are two terms with coefficient 1, but separated
by & — 1 terms.

The generator polynomial g{X) is equivalent to the generator matrix G as a descrip-
tion of the code. Correspondingly, the parity-check polynomial, denoted by 4(X), is an
equivalent representation of the parity-check matrix H. We thus find that the matrix re-
lation HGT = 0 presented in Equation (10.15) for linear block codes corresponds to the
relationship

g(X)h(X) mod(X” + 1) = 0 (10.41)

Accordingly, we may state that the generator polynomial g(X) and the parity-check poly-
nomial h(X) are factors of the polynomial X™ + 1, as shown by

gX)hiX) =X+ 1 (10.42)

This property provides the basis for selecting the generator or parity-check polynomial of
a cyclic code. In particular, we may state that if g(X) is a polynomial of degree (n— &)
and it is also a factor of X"+ 1, then g(X) is the generator polynomial of an (=, k) cyclic
code. Equivalently, we may state that if #(X) is a polynomial of degree % and it is also a
factor of X* + 1, then h(X) is the parity-check polynomial of an (1, k) cyclic code.

A final comment is in order. Any factor of X" + 1 with degree (z — k), the number
of parity bits, can be used as a generator polynomial. For large values of #, the polynomial
X" + 1 may have many factors of degree # — k. Some of these polynomial factors generate

10.4 Cyclic Codes 645

good cyclic codes, whereas some of them generate bad cyclic codes. The issue of how to
select generator polynomials that produce good cyclic codes is very difficult to resolve.
Indeed, coding theorists have expended much effort in the search for good cyclic codes.

GENERATOR AND PARITY-CHECK MATRICES

Given the generator polynomial g{X) of an (n, k) cyclic code, we may construct the gen-
erator matrix G of the code by noting that the k polynomials g(X), Xg(X), . .., X* 'g(X)
span the code. Hence, the #-tuples corresponding to these polynomials may be used as
rows of the k-by-n generator matrix G.

However, the construction of the parity-check matrix H of the cyclic code from the
parity-check polynomial #(X) requires special attention, as described here. Multiplying
Equation (10.42) by a(x) and then using Equation (10.35), we obtain

AdXh(X) = a(X) + X"a(X) (10.43)

The polynomials ¢(X) and h(X) are themselves defined by Equations (10.27) and (10.40),
respectively, which means that their product on the left-hand side of Equation (10.43)
contains terms with powers extending up to # + k& — 1. On the other hand, the polynomial
a(X) has degree k ~ 1 or less, the implication of which is that the powers of X*, X**1, . .
X! do not appear in the polynomial on the right-hand side of Equation {10.43). Thus,
setting the coefficients of X*, X*~*, ..., X"~ in the expansion of the product polynomial
c(X)h(X) equal to zero, we obtain the following set of n'— k equations:
jtk

D by =0 for0=<j=n-k-1 (10.44)

i=j

Comparing Equation (10.44) with the corresponding relation of Equation (10.16), we may
make the following important observation: The coefficients of the parity-check polynomial
h(X) involved in the polynomial multiplication described in Equation (10.44) are arranged
in reversed order with respect to the coefficients of the parity-check matrix H involved in
forming the inner product of vectors described in Equation (10.16). This observation sug-
gests that we define the reciprocal of the parity-check polynomial as follows:

k-1
X*H(X 1) = X”(l + 2 hX~ + X"‘)
= (10.45)

k-1

=14+ > b, X'+ X*
i=1

which is also a factor of X + 1. The n-tuples pertaining to the (n — k) polynomials
XEB(X Y, XEBXY, . .., X7 (X ™Y) may now be used in rows of the (n — k)-by-n
parity-check matrix H.

In general, the generator matrix G and the parity-check matrix H constructed in the
manner described here are not in their systematic forms. They can be put into their sys-
tematic forms by performing simple operations on their respective rows, as illustrated in
Example 10.3.

ENCODER FOR CycLIC CODES

Earlier we showed that the encoding procedure for an (#, &) cyclic code in systematic form
involves three steps: (1) multiplication of the message polynomial 72(X) by X*7*, (2) di-

646 CHAPTER 10 # ERROR-CONTROL CODING

[cate |
Gate

-4

L/

Flip-flop Moduto-2

adder Parity Code
bits ’°\D_w2£
bits o 2

FIGURE 10.8B Encoder for an (r, k) cyclic code.

vision of X" *m(X) by the generator polynomial g(X) to obtain the remainder 5(X), and
(3) addition of &(X) to X" *m(X) to form the desired code polynomial. These three steps
can be implemented by means of the encoder shown in Figure 10.8, consisting of a linear
feedback shift register with (n — k) stages.

The boxes in Figure 10.8 represent flip-flops, or unit-delay elements. The flip-flop is
a device that resides in one of two possible states denoted by 0 and 1. An exterral clock
(not shown in Figure 10.8) controls the operation of all the flip-flops. Every time the clock
ticks, the contents of the flip-flops (initially set to the state 0) are shifted out in the direction
of the arrows. In addition to the flip-flops, the encoder of Figure 10.8 includes a second
set of logic elements, namely, adders, which compute the modulo-2 sums of their respective
inputs. Finally, the multipliers multiply their respective inputs by the associated coeffi-
cients. In particular, if the coefficient g; = 1, the multiplier is just a direct “connection.”
If, on the other hand, the coefficient g; = 0, the multiplier is *“no connection.”

The operation of the encoder shown in Figure 10.8 proceeds as follows:

1. The gate is switched on. Hence, the k& message bits are shifted into the channel. As
soon as the k message bits have entered the shift register, the resulting (» — k) bits
in the register form the parity bits [recall that the parity bits are the same as the
coefficients of the remainder 5(X)].

2. The gate is switched off, thereby breaking the feedback connections.

3. The contents of the shift register are read out into the channel.

CALCULATION OF THE SYNDROME

Suppose the code word (cg, ¢4, - - - , €,~1) is transmitted over a noisy channel, resulting in
the received word (7o, 74, . . ., 7,,_1). From Section 10.3, we recall that the first step in the
decoding of a linear block code is to calculate the syndrome for the received word. If the
syndrome is zero, there are no transmission errors in the received word. If, on the other
hand, the syndrome is nonzero, the received word contains transmission errors that require
correction.

In the case of a cyclic code in systematic form, the syndrome can be calculated easily.
Let the received word be represented by a polynomial of degree # — 1 or less, as shown

by
X)) =ro+ X+ -+ r, X" (10.46)

10.4 Cyclic Codes 647

Let g(X) denote the quotient and s(X) denote the remainder, which are the results of
dividing 7(X) by the generator polynomial g(X). We may therefore express 7(X) as follows:

r(X) = g(X)g(X) + s(X) (10.47)

The remainder s{X) is a polynomial of degree # — k& — 1 or less, which is the result of
interest, It is called the syndrome polynomial because its coefficients make up the (# — k)-
by-1 syndrome s. ,

Figure 10.9 shows a syndrome calculator that is identical to the encoder of Figure
10.8 except for the fact that the received bits are fed into the (n — k) stages of the feedback
shift register from the left. As soon as all the received bits have been shifted into the shift
register, its contents define the syndrome s.

The syndrome polynomial s(X) has the following useful properties that follow from
the definition given in Equation (10.47).

1. The syndrome of a received word polynomial is also the syndrome of the corresponding
error polynomial.

Given that a cyclic code with polynomial ¢(X) is sent over a noisy channel, the received
word polynomial is defined by

7X) = eX) + e(X) (10.48)
where e(X) is the error polynomial. Equivalently, we may write
e(X) = rX) + ¢X) (10.49)
Hence, substituting Equations (10.35) and (10.47) into (10.49), we get
e(X) = u(X)g(X) + s(X) (10.50)

where the quotient is #(X) = a(X) + g(X). Equation (10.50) shows that s(X) is also the
syndrome of the error polynomial e(X). The implication of this property is that when the
syndrome polynomial s(X) is nonzero, the presence of transmission errors in the received
word is detected.

2. Let s(X) be the syndrome of a received word polynomial r(X). Then, the syndrome of
Xr(X), a cyclic shift of r(X), is Xs(X).
Applying a cyclic shift to both sides of Equation (10.47), we get

Xr(X) = Xq(X)g(X) + Xs(X) (10.51)

Received
bits

FIGURE 10.9 Syndrome calculator for (», k) cyclic code.

Flip-flop Modulo-2
adder

648

CHAPTER 10 # ErRroR-CONTROL CODING

from which we readily see that Xs(X) is the remainder of the division of Xr(X) by g(X).
Hence, the syndrome of Xr(X) is Xs(X) as stated. We may generalize this result by stating
that if s(X) is the syndrome of 7(X), then X’s(X) is the syndrome of X'r(X).

3. The syndrome polynomial s(X) is identical to the error polynomial e(X), assuming thas
the errors are confined to the (n — k) parity-check bits of the received word polynomig]
#(X).

The assumption made here is another way of saying that the degree of the error polynomja]
e(X) is less than or equal to {# — & — 1). Since the generator polynomial g(X) is of degree
(n — k), by definition, it follows that Equation (10.50) can only be satisfied if the quotient
#(X) is zero. In other words, the error polynomial e(X) and the syndrome polynomial s(x)
are one and the same. The implication of Property 3 is that, under the aforementioned
conditions, error correction can be accomplished simply by adding the syndrome poly-
nomial s(X) to the received word polynomial #(X).

& ExampLE 10.3 Hamming Codes Revisited

To illustrate the issues relating to the polynomial representation of cyclic codes, we consider

the generation of a (7, 4) cyclic code. With the block length 1 = 7, we start by factorizing

X’ + 1 into three irreducible polynomials:
X+1=(1+X1+X+X)1 +X+ X

By an “irreducible polynomial” we mean a polynomial that cannot be factored using only
polynomials with coefficients from the binary field. An irreducible polynomial of degree
m is said to be primitive if the smallest positive integer # for which the polynomial divides
X” + 1is n = 2™ — 1. For the example at hand, the two polynomials (1 + X + X3) and
(1 + X + X3) are primitive. Let us take

gX)=1+X+ X3
as the generator polynomial, whose degree equals the number of parity bits. This means that
the parity-check polynomial is given by

BX)={(1+X)1+X*+ X3

S1+X+X+X
whose degree equals the number of message bits k = 4.

Next, we illustrate the procedure for the construction of a code word by using this
generator polynomial to encode the message sequence 1001. The corresponding message poly-
nomial is given by

mX)y=1+X?
Hence, multiplying m(X) by X" * = X3, we get
X*km(X) = X? + X6
The second step is to divide X" *m(X) by g(X), the details of which (for the example at hand)
are given below:

X*+X
X'+ X+ 1)X° + X3
X6 + X'+ X
X4
x* + X2+ X

X2+ X

10.4 Cyclic Codes 642

Note that in this long division we have treated subtraction the same as addition, since we are
operating in modulo-2 arithmetic. We may thus write
X+ X6 X+x
=X X
1+X+X 1+X+X

That is, the quotient #(X) and remainder b(X) are as follows, respectively:
aX) =X+ X°
bX) =X+ X?
Hence, from Equation (10.38) we find that the desired code polynomial is
dX) = b(X) + X" *m(X)
=X+ X2+ X+ XS
The code word is therefore 0111001, The four right-most bits, 1001, are the specified message
bits. The three left-most bits, 011, are the parity~check bits. The code word thus generated is
exactly the same as the corresponding one shown in Table 10.1 for a (7, 4) Hamming code.
We may generalize this result by stating that any cyclic code generated by a primitive
polynomial is a Hamming code of mini distance 3.
' We next show that the generator polynomial g(X) and the parity-check polynomial
h(X) uniquely specify the generator matrix G and the parity-check matrix H, respectively.
To construct the 4-by-7 generator matrix G, we start with four polynomials represented
by g(X) and three cyclic-shifted versions of it, as shown by

gX)=1+X+X°
Xg(X) = X + X2 + X*
ng(X) =X2+ X+ X5
X%g(X) = X* + X* + X§

The polynomials g(X), Xg(X), X?g(X), and X?g(X) represent code polynomials in the (7, 4)
Hamming code. If the coefficients of these polynomials are used as the elements of the rows
of a 4-by-7 matrix, we get the following generator matrix:

1101000
0110100
G =
0011010
0001101

Clearly, the generator matrix G’ so constructed is not in systematic form. We can put it into
a systematic form by adding the first row to the third row, and adding the sum of the first
two rows to the fourth row. These manipulations result in the desired generator matrix:

1101000
0110100
G =
1110010
1010001

which is exactly the same as that in Example 10.2.

We next show how to construct the 3-by-7 parity-check matrix H from the parity-check
polynomial A(X). To do this, we first take the reciprocal of h(X), namely, X*h(X~"). For the
problem at hand, we form three polynomials represented by X*4(X~!) and two shifted ver-
sions of it, as shown by

XX H=1+X>+ X3+ X*
XpX N =X+X2+X*+ X
XX =X2+X*+ X°+ X°

650

CHAPTER 10 # ERROR-CONTROL CODING

[Gate |
Gate
I
T [] M ™
L/ L
Flip-fi Modulo-2
ip-flop gdg; Parity Code
bits A word
M bits o’

Ficure 10.10 Encoder for the (7, 4) cyclic code generated by g(X) = 1 + X + X3,

Using the coefficients of these three polynomials as the elements of the rows of the 3-by-7
patity-check matrix, we get

- = o

1 0
H=|0 0
0 1

=

111
011
101

Here again we see that the matrix H' is not in systematic form. To put it into a systematic
form, we add the third row to the first row to obtain

1001011
H=|0 101110
0010111

which is exactly the same as that of Example 10.2.

Figure 10.10 shows the encoder for the (7, 4) cyclic Hamming code generated by the
polynomial g(X) = 1 + X + X?*. To illustrate the operation of this encoder, consider the
message sequence (1001). The contents of the shift register are modified by the incoming
message bits as in Table 10.3. After four shifts, the contents of the shift register, and therefore
the parity bits, are (011). Accordingly, appending these parity bits to the message bits (1001),
we get the code word (0111001); this result is exactly the same as that determined earlier in
the example.

Figure 10.11 shows the corresponding syndrome calculator for the (7, 4) Hamming
code. Let the transmitted code word be {0111001) and the received word be (0110001); that
is, the middle bit is in error. As the received bits are fed into the shift register, initially set to
zero, its contents are modified as in Table 10.4. Ac the end of the seventh shift, the syndrome
is identified from the contents of the shift register as 110. Since the syndrome is nonzero, the
received word is in error. Moreover, from Table 10.2, we see that the errot pattern corre-
sponding to this syndrome is 0001000. This indicates that the error is in the middle bit of the
received word, which is indeed the case. 4

TABLE 10.3 Contents of the
shift register in the encoder
of Figure 10.10 for message
sequence (1001)

Shift

Input Register Contents

o N N

0 0 0 (initial state)
110
011
111
011

- o =

10.4 Cyclic Codes 651

Gate

Received I ™
bits \J L/
. Module-2 X Flip-flop
adder

FIGURE 10.11 Syndrome calculator for the (7, 4) cyclic code generated by the polynomial
X =1+X+X

ExampLE 10.4 Maximal-Length Codes

For any positive integer m = 3, there exists a maximal-length code with the following

parameters:
Block length: n=2"-1
Number of message bits: k=m
Minimum distance: doin = 2771

Maximal-length codes are generated by polynomials of the form

1+ X7
TnX)

g(X) (10.52)
where h(X) is any primitive polynomial of degree 1. Earlier we stated that any cyclic code
generated by a primitive polynomial is a Hamming code of minimum distance 3 (see Example
10.3). It follows therefore that maximal-length codes are the dunal of Hamming codes.

The polynomial #(X) defines the feedback connections of the encoder. The generator
polynomial g(X) defines one period of the maximal-length code, assuming that the encoder is
in the initial state 00 ... 01. To illustrate these points, consider the example of a (7, 3)
maximal-length code, which is the dual of the (7, 4) Hamming code described in Example
10.3. Thus, choosing

BX)=1+X+X°
we find that the generator polynomial of the (7, 3) maximal-length code is

gX)=1+X+X+Xx*

TABLE 10.4 Contents of the syndrome
caleulator in Figure 10.11 for the

received word 0110001
Shift Input Bit Contents of Shift Register
0 0 0 (initial state)

1 1 100
2 0 010
3 0 001
4 0 110
5 1 111
6 1 001
7 0 110

652

CHAPTER 10 & ERROR-CONTROL CODING

Modulo-2 Flip-flop
adder
FIGURE 10.12 Encoder for the (7, 3) maximal-length code; the initial state of the encoder is
shown in the figure.

Figure 10.12 shows the encoder for the (7, 3) maximal-length code, the feedback connections
of which are exactly the same as those shown in Figure 8.2 in Chapter 8. The period of the
code is # = 7. Thus, assuming that the encoder is in the initial state 001, as indicated in Figure
10.12, we find the output sequence is described by

1 0 0 1110100
initial gX)=1+X+XxX*+Xx*
state

This result may be readily validated by cycling through the encoder of Figure 10.12.
Note that if we were to choose the other primitive polynomial

Xy=1+X*+X°

for the (7, 3) maximal-length code, we would simply get the “image” of the code described
above, and the output sequence would be “reversed” in time. R

OTHER CycLIC CODES

We conclude the discussion of cyclic codes by presenting the characteristics of three other
important classes of cyclic codes.

Cyclic Redundancy Check Codes

Cyclic codes are extremely well-suited for error detection. We make this statement
for two reasons. First, they can be designed to detect many combinations of likely errors.
Second, the implementation of both encoding and error-detecting circuits is practical. It is
for these reasons that many of the error-detecting codes used in practice are of the cyclic-
code type. A cyclic code used for error-detection is referred to as cyclic redundancy check
(CRC) code.

We define an error burst of length B in an s-bit received word as a contiguous
sequence of B bits in which the first and last bits or any number of intermediate bits are
received in error. Binary (i, k) CRC codes are capable of detecting the following error
patterns:

1. All error bursts of length # — & or less.
2. A fraction of error bursts of length equal to # — k + 1; the fraction equals

1 — 27kl
3. A fraction of error bursts of length greater than n — k& + 1; the fraction equals
1 - 270k,

4, All combinations of d,;, — 1 {or fewer) errors.
5. All error patterns with an odd number of errors if the generator polynomial g(X)
for the code has an even number of nonzero coefficients.

16.4 Cyclic Codes 653

i TABLE 10.5 CRC codes

Code Generator Polynomial, g(X) n—k
CRC-12 code 1+X+X2+X+ X1+ X2 12
CRC-16 code (USA) 14+ X>+ X'+ X 16
CRC-ITU code 14+ X5+ X"+ X% 16

Table 10.5 presents the generator polynomials of three CRC codes that have become
international standards. All three codes contain 1 + X as a prime factor. The CRC-12
code is used for 6-bit characters, and the other two codes are used for 8-bit characters.
CRC codes provide a powerful method of error detection for use in automatic-repeat
request (ARQ) strategies discussed in Section 10.1, and digital subscriber lines discussed
in Chapter 4.

Bose—Chaudhuri-Hocquenghem (BCH) Codes®

One of the most important and powerful classes of linear-block codes are BCH codes,
which are cyclic codes with a wide variety of parameters. The most common binary BCH
codes, known as primitive BCH codes, are characterized for any positive integers # (equal
to or greater than 3) and ¢ [less than (2 — 1)/2] by the following parameters:

Block length: n=2"-1
Number of message bits: k= n — mt
Minimum distance: dpin =28+ 1

Each BCH code is a t-error correcting code in that it can detect and correct up to ¢ random
errors per code word. The Hamming single-error correcting codes can be described as
BCH codes. The BCH codes offer flexibility in the choice of code parameters, namely,
block length and code rate. Furthermore, for block lengths of a few hundred bits or less,
the BCH codes are among the best known codes of the same block length and code rate.

A detailed treatment of the construction of BCH codes is beyond the scope of
our present discussion. To provide a feel for their capability, we present in Table 10.6, the
code parameters and generator polynomials for binary block BCH codes of length up to
2° — 1. For example, suppose we wish to construct the generator polynomial for (15, 7)

B TABLE 10.6 Binary BCH codes of length up to 2° — 1

n k t Generator Polynomial

7 4 1 1 011
15 11 1 10 011
15 7 2 111 010 001
15 5 3 10 100 110 111
31 26 1 100 101
31 21 2 11 101 101 001
31 16 3 1 000 111 110 101 111
31 11 5 101 100 010 011 011 010 101
31 6 7 11 001 011 011 110 101 000 100 111

Notation: n = block length
k = number of message bits

¢t = maximum number of detectable errors

The high-order coefficients of the generator polynomial g(X) are at the left.

654 CuaPrER 10 8 ERROR-CONTROL CODING

i 10.5

BCH code. From Table 10.6 we have (111 010 001) for the coefficients of the generator
polynomial; hence, we write

gX) =X+ X"+ X+ X" +1

Reed—Solomon Codes®

The Reed—Solomon codes are an important subclass of #nonbinary BCH codes; they
are often abbreviated as RS codes. The encoder for an RS code differs from a binary
encoder in that it operates on multiple bits rather than individual bits. Specifically, an RS
(n, k) code is used to encode m-bit symbols into blocks consisting of n = 2" — 1 symbols,
that is, m(2™ — 1) bits, where m = 1. Thus, the encoding algorithm expands a block of &
symbols to 7 symbols by adding # — k redundant symbols. When 7 is an integer power
of two, the m-bit symbols are called bytes. A popular value of s is 8; indeed, 8-bit RS
codes are extremely powerful.

A t-error-correcting RS code has the following parameters:

Block length: n = 2™ — 1 symbols
Message size: k symbols
Parity-check size: n — k = 2t symbols

Minimum distance: doin = 2t + 1 symbols

The block length of the RS code is one less than the size of a code symbol, and the minimum
distance is one greater than the number of parity-check symbols. The RS codes make highly
efficient use of redundancy, and block lengths and symbol sizes can be adjusted readily to
accommodate a wide range of message sizes. Moreover, the RS codes provide a wide range
of code rates that can be chosen to optimize performance. Finally, efficient decoding tech-
niques are available for use with RS codes, which is one more reason for their wide ap-
plication (e.g., compact disc digital audio systems).

Convolutional Codes’

In block coding, the encoder accepts a k-bit message block and generates an n-bit code
word. Thus, code words are produced on a block-by-block basis. Clearly, provision must
be made in the encoder to buffer an entire message block before generating the associated
code word. There are applications, however, where the message bits come in serially rather
than in large blocks, in which case the use of a buffer may be undesirable. In such situa-
tions, the use of convolutional coding may be the preferred method. A convolutional coder
generates redundant bits by using modulo-2 convolutions, hence the name.

The encoder of a binary convolutional code with rate 1/z, measured in bits per
symbol, may be viewed as a finite-state machine that consists of an M-stage shift register
with prescribed connections to # modulo-2 adders, and a multiplexer that serializes the
outputs of the adders. An L-bit message sequence produces a coded output sequence of
length #(L + M) bits. The code rate is therefore given by

L

o M— i .53
r AL+ M) bits/symbol (10.53)

Typically, we have L >> M. Hence, the code rate simplifies to

T % bits/symbol (10.54)

10.5 Convolutional Codes 655

The constraint length of a convolutional code, expressed in terms of message bits, is defined
as the number of shifts over which a single message bit can influence the encoder output.
In an encoder with an M-stage shift register, the memory of the encoder equals M message
bits, and K = M + 1 shifts are required for a2 message bit to enter the shift register and
finally come out. Hence, the constraint length of the encoder is K.

Figure 10.13a shows a convolutional encoder with # = 2-and K = 3. Hence, the
code rate of this encoder is 1/2. The encoder of Flgure 10.134 operates on the incoming
message sequence, one bit at a time.

We may generate a binary convolutional code with rate &/n by using k separate shift
registers with prescribed connections to # modulo-2 adders, an input multiplexer and

Path 1
Medulo-2
adder
Ingut "% Qutput
L [
Flip-flop T

(a)

Flip-flop

[
L |

Input ; yel §D74 Output
[>

= e]
L/
Medulo-2
adder

[1
L
®

FIGURE 10.13 () Constraint length-3, rate-3 convolutional encoder. (b) Constraint length-2,
rate- convolutional encoder.

656

CHAPTER 10 @ ERROr-CONTROL CODING

an output multiplexer. An example of such an encoder is shown in Figure 10.13p
where k = 2, 1 = 3, and the two shift registers have K = 2 each. The code rate is 2/3. 1];
this second example, the encoder processes the incoming message sequence two bits at 5
time.

The convolutional codes generated by the encoders of Figure 10.13 are nonsystematic
codes. Unlike block coding, the use of nonsystematic codes is ordinarily preferred over
systematic codes in convolutional coding.

Each path connecting the output to the input of a convolutional encoder may be
characterized in terms of its impulse response, defined as the response of that path to
symbol 1 applied to its input, with each flip-flop in the encoder set initially in the zero
state, Equivalently, we may characterize each path in terms of a generator polynomial,
defined as the unit-delay transform of the impulse response. To be specific, let the generator
sequence (g0, gV, g9, . .., g4) denote the impulse response of the sth path, where the
coefficients g§, g?, %, - . . » g} equal 0 or 1. Correspondingly, the generator polynomial
of the #th path is defined by

gMD) = gf + gD + gfD* + - - + ghiDM (10.53)

where D denotes the unit-delay variable. The complete convolutional encoder is described
by the set of generator polynomials {g"(D), g¥(D), . . . , g"(D)}. Traditionally, different
variables are used for the description of convolutional and cyclic codes, with D being
commonly used for convolutional ¢odes and X for cyclic codes.

EXAMPLE 10.5

Consider the convolutional encoder of Figure 10.13a, which has two paths numbered 1 and
2 for convenience of reference. The impulse response of path 1 (i.e., upper path) is (1, 1, 1).
Hence, the cortesponding generator polynomial is given by

gVD) =1+ D + D?

The impulse response of path 2 (i.e., lower path) is (1, 0, 1). Hence, the corresponding gen-
erator polynomial is given by

g¥(D) =1+ D?
For the message sequence (10011), say, we have the polynomial representation
m(D) =1+ D> + D*

As with Fourier transformation, convolution in the time domain is transformed into multi-
plication in the D-domain. Hence, the output polynomial of path 1 is given by

&9(D) = g™(D)m(D)
{1+ D+ D¥1 + D* + D%
=1+ D+ D*+D*+ D¢

From this we immediately deduce that the output sequence of path 1 is (1111001). Similarly,
the output polynomial of path 2 is given by

(D) = g#(D)m(D)
(1+ D31+ D’ + D%
=1+D>+D*+D"+D*+D°

10.5 Convelutional Codes 657

The output sequence of path 2 is therefore (1011111). Finally, multiplexing the two output
sequences of paths 1 and 2, we get the encoded sequence

c = (11, 10, 11, 11, 01, 01, 11)

Note that the message sequence of length L = § bits produces an encoded sequence of length
#(L + K — 1) = 14 bits. Note also that for the shift register to be restored to its zero initial
*state, a terminating sequence of K — 1 = 2 zeros is appended to the last input bit of the

message sequence. The terminating sequence of K — 1 zeros is called the tail of the message.
<

= CoDE TREE, TRELLIS, AND STATE DIAGRAM

Traditionally, the structural properties of a convolutional encoder are portrayed in graph-
ical form by using any one of three equivalent diagrams: code tree, trellis, and state dia-
gram. We will use the convolutional encoder of Figure 10.134 as a running example to
illustrate the insights that each one of these three diagrams can provide.

We begin the discussion with the code tree of Figure 10.14. Each branch of the tree
represents an input symbol, with the corresponding pair of output binary symbols indi-
cated on the branch. The convention used to distinguish the input binary symbols 0 and
1 is as follows. An input O specifies the upper branch of a bifurcation, whereas input 1
specifies the lower branch. A specific path in the tree is traced from left to right in accor-
dance with the input (message) sequence. The corresponding coded symbols on the
branches of that path constitute the input (message) sequence. Consider, for example, the
message sequence (10011) applied to the input of the encoder of Figure 10.134. Following
the procedure just described, we find that the corresponding encoded sequence is
{11, 10, 11, 11, 01), which agrees with the first 5 pairs of bits in the encoded sequence {c;)
derived in Example 10.5.

From the diagram of Figure 10.14, we observe that the tree becomes repetitive after
the first three branches. Indeed, beyond the third branch, the two nodes labeled a are
identical, and so are all the other node pairs that are identically labeled. We may establish
this repetitive property of the tree by examining the associated encoder of Figure 10.13a.
The encoder has memory M = K — 1 = 2 message bits. Hence, when the third message
bit enters the encoder, the first message bit is shifted out of the register. Consequently,
after the third branch, the message sequences (100 #2311, . . .} and (000 m3m, . . .) generate
the same code symbols, and the pair of nodes labeled @ may be joined together. The same
reasoning applies to other nodes. Accordingly, we may collapse the code tree of Figure
10.14 into the new form shown in Figure 10.15, which is called a zrellis.® It is so called
since a trellis is a treelike structure with remerging branches. The convention used in Figure
10.15 to distinguish between input symbols 0 and 1 is as follows. A code branch produced
by an input 0 is drawn as a solid line, whereas a code branch produced by an input 1 is
drawn as a dashed line. As before, each input (message) sequence corresponds to a specific
path through the trellis. For example, we readily see from Figure 10.15 that the message
sequence (10011) produces the encoded output sequence (11, 10, 11, 11, 01), which agrees
with our previous result. :

A trellis is more instructive than a tree in that it brings out explicitly the fact that
the associated convolutional encoder is a finite-state machine. We define the state of a
convolutional encoder of rate 1/ as the (K — 1) message bits stored in the encoder’s shift
register. At time , the portion of the message sequence containing the most recent K bits
is written as (#_g—1 « . - » M1, m;), Where #; is the current bit. The (K — 1)-bit state of
the encoder at time ; is therefore written simply as (m;_1, . . . , #;_x.2, Mj—x+1). In the

658 CHAPTER 10 = ERROR-CONTROL CODING

00
w [,
0 11
a 10
11
b 01
00
1
10 [,
00
1, 51
01
410
00
00
u [,
11
0], o
00
b o1
11
11
o [
" 00
0 01 a o1
10
T 410
— 00
oo [
11
_u oL, 10
1 u
01
10
11
10 [
00
w |, -
01
410
11
00
un I
11
S 10.
00
b 01
01 .
01
00
10 |, P
10
210

FiGURE 10.14 Code tree for the convolutional encoder of Figure 10.13a.

case of the simple convolutional encoder of Figure 10.132 we have (K — 1) = 2. Hence,
the state of this encoder can assume any one of four possible values, as described in Table
10.7. The trellis contains {L + K) levels, where L is the length of the incoming message
sequence, and K is the constraint length of the code. The levels of the trellis are la beled as
j=0,1,...,L + K—1in Figure 10.15 for K = 3. Level j is also referred to as depth j
both terms are used interchangeably. The first (K— 1) levels correspond to the encoder’s
departure from the initial state 2, and the last (K — 1) levels correspond to the encoder’s

10.5 Convelutional Codes 659

C0 00 00 00 00 00 00 00

d
Level j=0 1

L+1 L+2,

FiGURE 10.15 Trellis for the convolutional enceder of Figure 10.13a.

return to the state a. Clearly, not all the states can be reached in these two portions of the
trellis. However, in the central portion of the trellis, for which the level j lies in the range
K — 1 = j = L, all the states of the encoder are reachable. Note also that the central
portion of the trellis exhibits a fixed periodic structure.

Consider next a portion of the trellis corresponding to times f and j + 1. We assume
that j = 2 for the example at hand, so that it is possible for the current state of the encoder
to be a, b, ¢, or d. For convenience of presentation, we have reproduced this portion of
the trellis in Figure 10.16a. The left nodes represent the four possible current states of the
encoder, whereas the right nodes represent the next states. Clearly, we may coalesce the
left and right nodes. By so doing, we obtain the state diagram of the encoder, shown in
Figure 10.16b. The nodes of the figure represent the four possible states of the encoder,
with each node having two incoming branches and two outgoing branches. A transition
from one state to another in response to input 0 is represented by a solid branch, whereas
a transition in response to input 1 is represented by a dashed branch. The binary label on
each branch represents the encoder’s output as it moves from one state to another. Suppose,
for example, the current state of the encoder is (01), which is represented by node c. The
application of input 1 to the encoder of Figure 10.134 results in the state (10) and the
encoded output (00). Accordingly, with the help of this state diagram, we may readily
determine the output of the encoder of Figure 10.134 for any incoming message sequence.
We simply start at state &, the all-zero initial state, and walk through the state diagram in
accordance with the message sequence. We follow a solid branch if the inputisa 0 and a
dashed branch if it is a 1. As each branch is traversed, we output the corresponding binary
label on the branch. Consider, for example, the message sequence (10011). For this input
we follow the path abcabd, and therefore output the sequence (11, 10, 11, 11, 01), which

TaBLE 10.7 State table
for the convolutional
encoder of Figure 10.13a

State Binary Description
a 00
b 10
c 01
d 1

660 CHAPTER 10 2 ERROR-CONTROL CODING

\
PP AN N d
Depth i+l 00

(a))]

FIGURE 10.16 (a) A portion of the central part of the trellis for the encoder of Figure 10.13a
(b) State diagram of the convolutional encoder of Figure 10.13a.

agrees exactly with our previous result. Thus, the input-output relation of a convolutional
encoder is also completely described by its state diagram,

10.6 Maximum Likelihood
Decoding of Convolutional Codes

Now that we understand the operation of a convolutional encoder, the next issue to be
considered is the decoding of a convolutional code. In this section we first describe the
underlying theory of maximum likelihood decoding, and then present an efficient algo-
rithm for its practical implementation.

Let m denote a message vector, and ¢ denote the corresponding code vector applied
by the encoder to the input of a discrete memoryless channel. Let r denote the received
vector, which may differ from the transmitted code vector due to channel noise. Given the
received vector r, the decoder is required to make an estimate fh of the message vector.
Since there is a one-to-one correspondence between the message vector m and the code
vector ¢, the decoder may equivalently produce an estimate € of the code vector. We may
then put @ = m if and only if &€ = c. Otherwise, a decoding error is committed in the
receiver. The decoding rule for choosing the estimate &, given the received vector r, is said
to be optimum when the probability of decoding error is minimized. From the material
presented in Chapter 6, we may state that for equiprobable messages, the probability of
decoding error is minimized if the estimate ¢ is chosen to maximize the log-likelibood
function. Let p(r | c) denote the conditional probability of receiving r, given that ¢ was sent.

10.6 Maximun: Likelihood Decoding of C lutional Codes 661

The log-likelihood function equals log p(r|c). The maximum likelihood decoder or deci-
sion rule is described as follows:

Choose the estimate & for which the

log-likelihood function log p(r|c) is maximum. (10.56)

Consider now the special case of a binary symmetric channel. In this case, both the
transmitted code vector ¢ and the received vector r represent binary sequences of length
N, say. Naturally, these two sequences may differ from each other in some locations be-
cause of errors due to channel noise. Let ¢; and r; denote the ith elements of ¢ and r,
respectively. We then have

pir|c) = 1:[1 pirle) (10.57)
Correspondingly, the log-likelihood is
N
log plr E log p(r; (10.58)

Let the transition probability p(r;| ;) be defined as

b, ifr; # ¢ ’
i) = . 10.59
plr;|c) {1_% P (10.59)
Suppose also that the received vector r differs from the transmitted code vector ¢ in exactly
d positions. The number d is the Hamming distance between vectors r and c. Then, we
may rewrite the log-likelihood function in Equation (10.58) as

log p(r|c) = dlog p + (N — d) log(1 — p)

p (10.60)
= - |+ -
d log(1 — p) N log(1 — p)
In general, the probability of an error occurring is low enough for us to assume p < 1/2.
We also recognize that N log(1 — p) is a constant for all c. Accordingly, we may restate
the maximum-likelihood decoding rule for the binary symmetric channel as follows:

Choose the estimate & that minimizes the Hamming distance (10.61)
between the received vector r and the transmitted vector c. ’

That is, for the binary symmetric channel, the maximum-likelihood decoder reduces to a
minimum distance decoder. In such a decoder, the received vector r is compared with each
possible transmitted code vector c, and the particular one closest to r is chosen as the
correct transmitted code vector. The term “closest” is used in the sense of minimum num-
ber of differing binary symbols (i.e., Hamming distance) between the code vectors under
investigation.

g THE VITERBI ALGORITHM’

The equivalence between maximum likelihood decoding and minimum distance decoding
for a binary symmetric channel implies that we may decode a convolutional code by choos-
ing a path in the code tree whose coded sequence differs from the received sequence in the
fewest number of places. Since a code tree is equivalent to a trellis, we may equally limit
our choice to the possible paths in the trellis representation of the code. The reason for
preferring the trellis over the tree is that the number of nodes at any level of the trellis

662

CHAPTER 10 = ERROR-CONTROL CODING

does not continue to grow as the number of incoming message bits increases; rather, it
remains constant at 2%, where K is the constraint length of the code.

Consider, for example, the trellis diagram of Figure 10.15 for a convolutional code
with rate r = 1/2 and constraint length K = 3. We observe that at level j = 3, there are
two paths entering any of the four nodes in the trellis. Moreover, these two paths will be
identical onward from that point. Clearly, a minimum distance decoder may make a de.
cision at that point as to which of those two paths to retain, without any loss of perfor-
mance. A similar decision may be made at level j = 4, and so on. This sequence of decisiong
is exactly what the Viterbi algorithm does as it walks through the trellis. The algorithm
operates by computing a metric or discrepancy for every possible path in the trellis. The
metric for a particular path is defined as the Hamming distance between the coded sequence
represented by that path and the received sequence. Thus, for each node (state} in the trelljs
of Figure 10.15 the algorithm compares the two paths entering the node. The path with
the lower metric is retained, and the other path is discarded. This computation is repeated
for every level j of the trellis in the range M = j < L, where M = K — 1 is the encoder’s
memory and L is the length of the incoming message sequence. The paths that are retained
by the algorithm are called survivor or active paths. For a convolutional code of constraint
length K= 3, for example, no more than 2! = 4 survivor paths and their metrics will
ever be stored. This list of 25 paths is always guaranteed to contain the maximum-
likelihood choice.

A difficulty that may arise in the application of the Viterbi algorithm is the possibility
that when the paths entering a state are compared, their metrics are found to be identical,
In such a situation, we make the choice by flipping a fair coin (i.e., simply make a guess).

In summary, the Viterbi algorithm is a maximum-likelihood decoder, which is op-
timum for an AWGN channel. It proceeds in a step-by-step fashion as follows:

Initialization

Label the left-most state of the trellis (i.e., the all-zero state at level 0) as 0, since
there is no discrepancy at this point in the computation.

Computation step j + 1
Letj=0,1,2,...,and suppose that at the previous step j we have done two things:

& All survivor paths are identified.
The survivor path and its metric for each state of the trellis are stored.

Then, at level (clock time) j + 1, compute the metric for all the paths entering each state
of the trellis by adding the metric of the incoming branches to the metric of the connecting
survivor path from level j. Hence, for each state, identify the path with the lowest metric
as the survivor of step j + 1, thereby updating the computation.

Final Step

Continue the computation until the algorithm completes its forward search through
the trellis and therefore reaches the termination node (i.e., all-zero state), at which time it
makes a decision on the maximum likelihood path. Then, like a block decoder, the se-
quence of symbols associated with that path is released to the destination as the decoded
version of the received sequence. In this sense, it is therefore more correct to refer to the
Viterbi algorithm as a maximum likelibood sequence estimator.

However, when the received sequence is very long (near infinite), the storage require-
ment of the Viterbi algorithm becomes too high, and some compromises must be made.

10.6 Maximum Likelihood Decoding of Convolutional Codes 663

The approach usually taken is to “truncate” the path memory of the decoder as described
here. A decoding window of length ¢ is specified, and the algorithm operates on a corre-
sponding frame of the received sequence, always stopping after £ steps. A decision is then
made on the “best” path and the symbol associated with the first branch on that path is
released to the user. The symbol associated with the last branch of the path is dropped.
Next, the decoding window is moved forward one time interval, and a decision on the
next code frame is made, and so on. The decoding decisions made in this way are no longer
truly maximum likelihood, but they can be made almost as good provided that the decod-
ing window is long enough. Experience and analysis have shown that satisfactory results
are obtained if the decoding window length ¢ is on the order of 5 times the constraint
length K of the convolutional code or more.

ExampLE 10.6 Correct Decoding of Received All-Zero Sequence

Suppose that the encoder of Figure 10.134 generates an all-zero sequence that is sent over a
binary symmetric channel, and that the received sequence is (0100010000 . . .). There are two
errors in the received sequence due to noise in the channel: one in the second bit and the other
in the sixth bit. We wish to show that this double-error pattern is correctable through the
application of the Viterbi decoding algorithm.

In Figure 10.17, we show the results of applying the algorithm for level j = 1, 2, 3, 4,
5. We see that for j = 2 there are (for the first time) four paths, one for each of the four states
of the encoder. The figure also includes the metric of each path for each level in the
computation.)

In the left side of Figure 10.17, for j = 3 we show the paths entering each of the states,
together with their individual metrics. In the right side of the figure, we show the four survivors
that result from application of the algorithm for level j = 3, 4, 5.

Examining the four survivors in Figure 10.17 for j = 5, we see that the all-zero path
has the smallest metric and will remain the path of smallest metric from this point forward.
This clearly shows that the all-zero sequence is the maximum likelihood choice of the Viterbi
decoding algorithm, which agrees exactly with the transmitted sequence. <

® ExampiLE 10.7 Incorrect Decoding of Received All-Zero Sequence

Suppose next that the received sequence is (1100010000 . . .), which contains three errors
compared to the transmitted all-zero sequence.

In Figure 10.18, we show the results of applying the Viterbi decoding algorithm for j =
1, 2, 3, 4. We see that in this example the correct path has been eliminated by level j = 3.
Cleatly, a triple-error pattern is uncorrectable by the Viterbi algorithm when applied to a
convolutional code of rate 1/2 and constraint length K = 3. The exception to this rule is a
triple-error pattern spread over a time span longer than one constraint length, in which case
it is very likely to be correctable. 4

& FREE DISTANCE OF A CONVOLUTIONAL CODE

The performance of a convolutional code depends not only on the decoding algorithm
used but also on the distance properties of the code. In this context, the most important
single measure of a convolutional code’s ability to combat channel noise is the free distance,
denoted by dk.... The free distance of a convolutional code is defined as the minimum
Hamming distance between any two code words in the code. A convolutional code with
free distance df,.. can correct ¢ errors if and only if dj., is greater than 2¢.

The free distance can be obtained quite simply from the state diagram of the con-
volutional encoder. Consider, for example, Figure 10.16b, which shows the state diagram

664 CuarTER 10 8 ERROR-CONTROL CODING

Received
sequence 01
1
O—
N
i \
j=1 \\\ .
o
Received

sequence

Received
sequence

Received
sequence

Received
sequence 01 o0 01 oo 00

1 1 2 2 2 1 1 2 2 2
o o
N N AN 5
N1 N2 2 4 2 2
» e » 23
=5 \\ 73 U\
]= \ 3 I A
\° \ \ »3
\ \ 4 2 3
\ \ 3 \
- __\. ® . V3
2 3 4 .
Survivors

FIGURE 10.17 Tllustrating steps in the Viterbi algorithm for Example 10.6.

10.6 Maxinum Likelihood Decoding of Convolutional Codes 665

Received
sequence 11
2
0 a—e
\\
j=1 \\ o
.
Received
sequence 11 oo
2 2
Ca—a—e
N N
N N
N N
O
.4
i=2 \\
\\
\ 1
\
Ay
A
%
Recejved
sequence 11 00 01

Received
sequence

FIGURE 10.18 [llustrating breakdown of the Viterbi algorithm in Example 10.7.

of the encoder of Figure 10.13a. Any nonzero code sequence cotresponds to a complete
path beginning and ending at the 00 state (i.e., node). We thus find it useful to split this
node in the manner shown in the modified state diagram of Figure 10.19, which may be
viewed as a signal-flow graph with a single input and a single output. A signal-flow graph
consists of nodes and directed branches, it operates by the following rules:

1. A branch multiplies the signal at its input node by the transmittance characterizing
that branch.

2. A node with incoming branches sums the signals produced by all of those branches.

3. The signal at a node is applied equally to all the branches outgoing from that node.

4. The transfer function of the graph is the ratio of the output signal to the input signal.

666

CHAPTER 10 2 ErROR-CONTROL CODING

DL
~
VA
| |
v
\
d
/
4
/
/
DL/ DL
/
/
/
/
DL / DL DL
~—— = v
ag b\\\\ - - c a;
L

FIGURE 10.19 Modified state diagram of convolutional encoder.

Returning to the signal-flow graph of Figure 10.19, we note that the exponent of D on a
branch in this graph describes the Hamming weight of the encoder output corresponding
to that branch. The exponent of L is always equal to one, since the length of each branch
is one. Let T(D, L) denote the transfer function of the signal-flow graph, with D and L
playing the role of dummy variables. For the example of Figure 10.19, we may readily use
rules 1, 2, and 3 to obtain the following input-output relations:

b = D?Lay + Lc
¢ = DLb + DLd
d = DLb + DLd
a; = DL¢

(10.62)

where 4o, b, ¢, d, and a; denote the node signals of the graph. Solving the set of Equations
{10.62) for the ratio a,/aq, we find that the transfer function of the graph in Figure 10.19
is given by
DsL?
- = .63
b, L) 1-DL(1+ L) (1063)

Using the binomial expansion, we may equivalently write

@

T(D, L) = DS1* 3 (DL(1 + L)Y (10.64)
=0
Setting L = 1 in Equation (10.64), we thus get the distanice transfer function expressed in
the form of a power series:

T(D, 1) = D5 + 2D + 4D7 + +-- (10.65)

Since the free distance is the minimum Hamming distance between any two code words
in the code and the distance transfer function T(D, 1) enumerates the number of code
words that are a given distance apart, it follows that the exponent of the first term in the
expansion of T(D, 1) defines the free distance. Thus, on the basis of Equation {10.65), the
convolutional code of Figure 10.134 has a free distance dg.. = 5.

This result indicates that up to two errors in the received sequence are correctable,
for two or fewer transmission errors will cause the received sequence to be at most at 2
Hamming distance of 2 from the transmitted sequence but at least ata Hamming distance
of 3 from any other code sequence in the code. In other words, in spite of the presence of

10.6 Maximum Likelihood Decoding of Convolutional Codes 667

TABLE 10.8 Maximum free distances
attainable with systematic and
nonsystematic convolutional codes

of rate 1/2

Constraint

Length K Systematic Nomnsystematic
2 3 3
3 4 5
4 4 6
5 5 7
6 6 8
7 6 10
8 7 10

any pair of transmission errors, the received sequence remains closer to the transmitted
sequence than any other possible code sequence. However, this statement is no longer true
if there are three or more closely spaced transmission errors in the received sequence. These
observations confirm the results reported earlier in Examples 10.6 and 10.7.

In using the distance transfer function T(D, 1) to calculate the free distance of a
convolutional code, it is assumed that the power series in the unit-delay variable D rep-
resenting T(D, 1) is convergent (i.e., its sum has a “finite” value). This assumption is
required to justify the expansion given in Equation (10.65) for the convolutional code of
Figure 10.134. However, there is no guarantee that T(D, 1) is always convergent. When
T(D, 1} is nonconvergent, an infinite number of decoding errors are caused by a finite
number of transmission errors; the convolutional code is then subject to catastrophic error
propagation, and the code is called a catastrophic code.' In this context it is noteworthy
that a systematic convolutional code cannot be catastrophic. Unfortunately, for a pre-
scribed constraint length K, the free distances that can be attained with systematic con-
volutional codes using schemes such as those shown in Figure 10,13 are usually smaller
than for the case of nonsystematic convolutional codes, as indicated in Table 10.8.

2 ASYMPTOTIC CODING GAIN'!

The transfer function of the encoder state diagram, modified in 2 manner similar to that
illustrated in Figure 10.19, may be used to evaluate a bound on the bit error rate for a
given decoding scheme; details of this evaluation are, however, beyond the scope of our
present discussion. Here we simply summarize the results for two special channels, namely,
the binary symmetric channel and the binary-input additive white Gaussian noise (AWGN)
channel, assuming the use of binary phase-shift keying (PSK) with coherent detection.

1. Binary symmetric channel. The binary symmetric channel may be modeled as an ad-
ditive white Gaussian noise channel with binary phase-shift keying (PSK) as the modula-
tion and with hard-decision demodulation. The transition probability p of the binary sym-
metric channel is then equal to the bit error rate (BER) for the uncoded binary PSK system.
From Chapter 6 we recall that for large values of E,/N, the ratio of signal energy per bit-
to-noise power spectral density, the bit error rate for binary PSK without coding is dom-
inated by the exponential factor exp(—F,/N,). On the other hand, the bit error rate for
the same modulation scheme with convolutional coding is dominated by the exponential

668 CHAPTER 10 & ERROR-CONTROL CODING

§ 10.7

factor exp(—dserEs/2No), where 7 is the code rate and dp,.. is the free distance of the
convolutional code. Therefore, as a figure of merit for measuring the improvement in error
performance made by the use of coding with hard-decision decoding, we may use the
exponents to define the asymptotic coding gain (in decibels) as follows:

d ree
G, =10 logm(= ’) dB (10.66)
2. Binary-input AWGN channel. Consider next the case of a memoryless binary-input
AWGN channel with no output quantization [i.e., the output amplitude lies in the interval
(—eo, ®)]. For this channel, theory shows that for large values of E;/N, the bit error rate
for binary PSK with convolutional coding is dominated by the exponential factor

exp(—dierE,/Ny), where the parameters are as previously defined. Accordingly, in this
case, we find that the asymptotic coding gain is defined by

G, = 10 logo(dge.r) dB (10.67)

From Equations (10.66) and (10.67) we see that the asymptotic coding gain for the
binary-input AWGN channel is greater than that for the binary symmetric channel by 3
dB. In other words, for large E,/Ng, the transmitter for a binary symmetric channel must
generate an additional 3 dB of signal energy (or power) over that fora binary-input AWGN
channel if we are to achieve the same error performance. Clearly, there is an advantage to
be gained by permitting an unquantized demodulator output instead of making hard de-
cisions. This improvement in performance, however, is attained at the cost of increased
decoder complexity due to the requirement for accepting analog inputs.

The asymptotic coding gain for a binary-input AWGN channel is approximated to
within about 0.25 dB by a binary input Q-ary output discrete memoryless channel with
the number of representation levels Q = 8. This means that we may avoid the need for
an analog decoder by using a soft-decision decoder that performs finite output quantization
(typically, Q = 8), and yet realize a performance close to the optimum.

Trellis-Coded Modulation'

In the traditional approach to channel coding described in the preceding sections of the
chapter, encoding is performed separately from modulation in the transmitter; likewise for
decoding and detection in the receiver. Moreover, error control is provided by transmitting
additional redundant bits in the code, which has the effect of lowering the information bit
rate per channel bandwidth. That is, bandwidth efficiency is traded for increased power
efficiency.

To attain a more effective utilization of the available bandwidth and power, coding
and modulation have to be treated as a single entity. We may deal with this new situation
by redefining coding as the process of imposing certain patterns on the transmitted signal.
Indeed, this definition includes the traditional idea of parity coding.

Trellis codes for band-limited channels result from the treatment of modulation and
coding as a combined entity rather than as two separate operations. The combination itself
is referred to as trellis-coded modulation (TCM). This form of signaling has three basic
features:

1. The number of signal points in the constellation used is larger than what is required
for the modulation format of interest with the same data rate; the additional points
allow redundancy for forward error-control coding without sacrificing bandwidth.

10.7 Trellis-Coded Modulation 669

2. Convolutional coding is used to introduce a certain dependency between successive
signal points, such that only certain patterns or sequences of signal points are
permitted.

. 3. Soft-decision decoding is performed in the receiver, in which the permissible sequence
of signals is modeled as a trellis structure; hence, the name “trellis codes.”

This latter requirement is the result of using an enlarged signal constellation. By increasing
the size of the constellation, the probability of symbol érror increases for a fixed signal-
to-noise ratio. Hence, with hard-decision demodulation we would face a performance loss
before we begin. Performing soft-decision decoding on the combined code and modulation
trellis ameliorates this problem.

In the presence of AWGN, maximum likelihood decoding of trellis codes consists of
finding that particular path through the trellis with minimum squared Euclidean distance
to the received sequence. Thus, in the design of trellis codes, the emphasis is on maximizing
the Euclidean distance between code vectors (or, equivalently, code words) rather than
maximizing the Hamming distance of an error-correcting code. The reason for this ap-
proach is that, except for conventional coding with binary PSK and QPSK, maximizing
the Hamming distance is not the same as maximizing the squared Fuclidean distance.
Accordingly, in what follows, the Euclidean distance is adopted as the distance measure
of interest. Moreover, while a more general treatment is possible, the discussion is (by
choice) confined to the case of two-dimensional constellations of signal posints. The im-
plication of such a choice is to restrict the development of trellis codes to multilevel am-
plitude and/or phase modulation schemes such as M-ary PSK and M-ary QAM.

The approach used to design this type of trellis codes involves partitioning an M-ary
constellation of interest successively into 2, 4, 8, . . . subsets with size M/2, M/4, M/8, . . .,
and having progressively larger increasing minimum Euclidean distance between their re-
spective signal points. Such a design approach by set partitioning represents the “key idea”
in the construction of efficient coded modulation techniques for band-limited channels.

In Figure 10.20, we illustrate the partitioning procedure by considering a circular
constellation that corresponds to 8-PSK. The figure depicts the constellation itself and the
2 and 4 subsets resulting from two levels of partitioning. These subsets share the common

e
dy = 2 5in (%]= 2-42 : doI
)
/ \
) ®0
4 =32 -{:o o ®
1= [} ® * =]
®0 oe
oo oe oo e
e, o o o o e o o
dg=2 o dz\o o o . o o o
oo s 0 o0 os
00 10 o1 11
Signal 0 2 1 3
number -

FIGURE 10,20 Partitioning of 8-PSK constellation, which shows that dy < d, < d,.

670

CHAPTER 10 ¥ ERROR-CONTROL CODING

2 e
...Ido
o 5 o O
2 e o0
/ \
[« e O ® 066
dl%\oo ® 0 ® 0
0O 9 O o e® 09
O/O.O. 1 0/.0.0 1
d2 o8 0 }00 O ® 06 }OO
fEOOO o eo0e o 000 ® O ¢ O
o & O 0 0 00 O e 0@ 0 0 00
0O 0 0O o @ 08 0o 0 0 O ® 0 & O
o TTNL o TN oy N o
dﬁA@\OO 0o 0O @0 0 00O 00 00 o 00 @ O ® 0 0 00 0O 00 0o
[«] o o 0 00O O ® 0O o008 0 0 00 0 0 00 00 ®& O ® 000
[<le]] ® OD O 0o 000 0 0 D O o ® 0O 0009 0 00O 0 00 o0
0o 0 00 0 000 0O 00 e o ® OO © 0 00 o 0 00 @ 00O OO0 ®0Q
000 1loo 010 110 001 101 011 111
Signa! 0 4 2 [1 5 3 7

number

Ficure 10.21 Partitioning of 16-QAM constellation, which shows thatdy < d; < d, <d,.

property that the minimum Euclidean distances between their individual points follow an
increasing pattern: dy < dy < do.

Figure 10.21 illustrates the partitioning of a rectangular constellation corresponding
to 16-QAM. Here again we see that the subsets have increasing within-subset Euclidean
distances: dy < dy < dy < ds.)

Based on the subsets resulting from successive partitioning of a two-dimensional
constellation, we may devise relatively simple and yet highly effective coding schemes.
Specifically, to send # bits/symbol with quadrature modulation (i.e., one that has in-phase
and quadrature components), we start with a two-dimensional constellation of 2**" signal
points appropriate for the modulation format of interest; a circular grid is used for M-ary
PSK, and a rectangular one for M-ary QAM. In any event, the constellation is partitioned
into 4 or 8 subsets. One or two incoming bits per symbol enter a rate-1/2 or rate-2/3
binary convolutional encoder, respectively; the resulting two or three coded bits per symbol
determine the selection of a particular subset. The remaining uncoded data bits determine
which particular point from the selected subset is to be signaled. This class of trellis codes
is known as Ungerboeck codes. .

Since the modulator has memory, we may use the Viterbi algorithm to perform
maximum likelihood sequence estimation at the receiver. Each branch in the trellis of the
Ungerboeck code corresponds to a subset rather than an individual signal point. The first
step in the detection is to determine the signal point within each subset that is closest to
the received signal point in the Euclidean sense. The signal point so determined and its
metric {i.e., the squared Euclidean distance between it and the received point) may be used
thereafter for the branch in question, and the Viterbi algorithm may then proceed in the
usual manner.

& UNGERBOECK CODES FOR 8-PSK

The scheme of Figure 10.22a depicts the simplest Ungerboeck 8-PSK code for the trans-
mission of 2 bits/symbol. The scheme uses a rate-1/2 convolutional encoder; the corre-

10.7 Trellis-Coded Modulation 671

o -
Input : Flip-flop f ~ 8-PsK
o : : signal mapper Maost significant bit
: [L 00001111
j \> 0011001 1
: o1010101
| Modulo-2 1 .
! adder l j01234567
mot t
l _j‘ Signal nurber Py

10

01

11

FIGURE 10.22 (a) Four-state Ungerboeck code for 8-PSK; the mapper follows Figure 10.20.
(b) Trellis of the code.

sponding trellis of the code is shown in Figure 10.225, which has four states. Note that
the most significant bit of the incoming binary word is left uncoded. Therefore, each branch
of the trellis may correspond to two different output values of the 8-PSK modulator or,
equivalently, to one of the four 2-point subsets shown in Figure 10.20, The trellis of Figure
10.22b also includes the minimum distance path.

The scheme of Figure 10.23a depicts another Ungerboeck 8-PSK code for trans-
mitting 2 bits/sample; it is next in the level of complexity. This second scheme uses a
rate-2/3 convolutional encoder. Therefore, the corresponding trellis of the code has eight
states, as shown in Figure 10.23b. In this case, both bits of the incoming binary word are
encoded. Hence, each branch of the trellis corresponds to a specific output value of the
8-PSK modulator. The trellis of Figure 10.235 also includes the minimum distance path.

Figures 10.22b and 10.23b also include the encoder states. In Figure 10.22, the state
of the encoder is defined by the contents of the two-stage shift register. On the other hand,
in Figure 10.23, it is defined by the content of the single-stage (top) shift register followed
by that of the two-stage (bottom) shift register.

672 CHAPTER 10 2 ERROR-CONTROL CODING

Rate~2/3 convolutional encoder

v
{ Flip-flop |
i
1
] |
! !
Input | :
|
! i
‘ el
) i
i ! | 8-PSK
{ Modulo-2 : signal mapper Most significant bit
I adder P
| oooo01111
| > :
1
I N sloo110011
| N
{ E 01010101
B e e e e e e e 4
012345867
Signal number Qutput
@
Encoder
state
000
010
100
110
001
011
101
111

(b

FicuURE 10.23 (a) Eight-state Ungerboeck code for 8-PSK; the mapper follows Figure 10.20.
(b) Trellis of the code with only some of the branches shown.

10.7 Trellis-Coded Modulation 673

AsYMPTOTIC CODING GAIN

Following the discussion in Section 10.6, we define the asymprotic coding gain of Unger-
boeck codes as

(d%r:e)
G, = 10 logso| —3 (10.68)
dret
where di.. is the free Euclidean distance of the code and d.; is the minimum Euclidean
distance of an uncoded modulation scheme operating with the same signal energy per bit.
For example, by using the Ungerboeck 8-PSK code of Figure 10.224, the signal constel-
lation has 8 message points, and we send 2 message bits per point. Hence, uncoded trans-
mission requires a signal constellation with 4 message points. We may therefore regard
uncoded 4-PSK as the reference for the Ungerboeck 8-PSK code of Figure 10.224.

The Ungerboeck 8-PSK code of Figure 10.224 achieves an asymptotic coding gain
of 3 dB, calculated as follows:

1. Each branch of the trellis in Figure 10.22b corresponds to a subset of two antipodal
signal points. Hence, the free Euclidean distance dj... of the code can be no larger
than the Euclidean distance d, between the antipodal signal points of such a subset.
We may therefore write

dfree = dZ =

where the distance d, is defined in Figure 10.24a; see also Figure 10.20.
2. The minimum Euclidean distance of an uncoded QPSK, viewed as a reference op-
erating with the same signal energy per bit, equals (see Figure 10.24b)

det = V2

Hence, as previously stated, the use of Equation (10.68) yields an asymptotic coding gain
of 10 logyo 2 = 3 dB.

The asymptotic coding gain achievable with Ungerboeck codes increases with the
number of states in the convolutional encoder. Table 10.9 presents the asymptotic coding
gain (in dB) for Ungerboeck 8-PSK codes for increasing number of states, expressed with

Quadrature Quadrature
L) L dref
P——
d,
2 In-phase 1 in-phase
(2] (2]
e
L] ®
. ®
(@) v

FIGURE 10.24 Signal-space diagrams for calculation of asymptatic coding gain of Ungerboeck
8-PSK code. (@) Definition of distance d,. (b) Definition of reference distance d,.s.

674 CHAPTER 10 & ERror-CONTROL CODING

with respect to uncoded 4-PSK

é TABLE 10.9 Asympiotic coding gain of Ungerboeck 8-PSK codes,

Number of states 4 8 16 32 64 128 256 512

Coding gain (dB) 3 3.6 4.1 4.6 4.8 5 54 5.7

respect to uncoded 4-PSK. Note that improvements on the order of 6 dB require codes
with a very large number of states.

i 10.8 Turbo Codes'’

Traditionally, the design of good codes has been tackled by constructing codes with a great
deal of algebraic structure, for which there are feasible decoding schemes. Such an ap-
proach is exemplified by the linear block codes and convolutional codes discussed in pre-
ceding sections. The difficulty with these traditional codes is that, in an effort to approach
the theoretical limit for Shannon’s channel capacity, we need to increase the code-word
length of a linear block code or the constraint length of a convolutional code, which, in
turn, causes the computational complexity of a maximum likelihood decoder to increase
exponentially. Ultimately, we rcach a point where complexity of the decoder is so high
that it becomes physically unrealizable.

Various approaches have been proposed for the construction of powerful codes with
large “equivalent” block lengths structured in such a way that the decoding can be split
into a number of manageable steps. Building on these previous approaches, the develop-
_ment of turbo codes and low-density parity-check codes has been by far most successful.
Indeed, this development has opened a brand new and exciting way of constructing good
codes and decoding them with feasible complexity. Turbo codes are discussed in this sec-
tion and low-density parity-check codes are discussed in Section 10.10.

Turso CODING

In its most basic form, the encoder of a turbo code consists of two constituent systematic
encoders joined together by means of an interleaver, as illustrated in Figure 10.25.

An interleaver is an input-output mapping device that permutes the ordering of a
sequence of symbols from a fixed alphabet in a completely deterministic manner; that is,
it takes the symbols at the input and produces identical symbols at the output but in a
different temporal order. The interleaver can be of many types, of which the periodic and
pseudo-random are two. Turbo codes use a pseudo-random interleaver, which operates

Systematic
bits x

Encoder 1 Paritly—check
Message bits 7 Output
bits x
Parity-check
——>l Interleaver H Encoder 2 }__;. bits 2,

FiGURE 10.25 Block diagram of turbo encoder.

10.8 Turbo Codes 675

only on the systematic bits. There are two reasons for the use of an interleaver in a turbo
code:

» To tie together errors that are easily made in one half of the turbo code to errors
that are exceptionally unlikely to occur in the other half. This is indeed the main
reason why the turbo code performs better than a traditional code.

» To provide robust performance with respect to mismatched decoding, which is a
problem that arises when the channel statistics are not known or have been incor-
rectly specified.

Typically, but not necessarily, the same code is used for both constituent encoders
in Figure 10.25. The constituent codes recommended for turbo codes are short constraint-
length recursive systematic convolutional (RSC) codes. The reason for making the con-
volutional codes recursive (i.e., feeding one or more of the tap outputs in the shift register
back to the input) is to make the internal state of the shift register depend on past outputs.
This affects the behavior of the error patterns (a single error in the systematic bits produces
an infinite number of parity errors), with the result that a better performance of the overall
coding strategy is attained.

b ExampLE 10.8 Eight-state RSC Enceder

Figure 10.26 shows an example eight-state RSC encoder. The generator matrix for this re-

cursive convolutional code is
1+D+D*+D°
8(D) = [1> m—}

where D is the delay variable. The second entry of the matrix g(D) is the transfer function of
the feedback shift register, defined as the transform of the output divided by the transform
of the input. Let M(D) denote the transform of the message sequence ()%, and B(D) denote

the transform of the parity sequence {b}7=f. By definition, we have

BD) 1+D+D*+D?

{10.69)

D) 1+D+D°
- Cross-multiplying, we get:
(1+ D+ D*+ D)M(D) = (1 + D + D})B(D)

which, on inversion into the time domain, yields

my o+ my s+ b+ b+ b =0 (10.70)
bitsx © bits x
5 ; Flip-fiop
. .
L/ L
Module-2
adder

Parity-check
bits 2

FIGURE 10.26 Example eight-state recursive systematic convolutional (RSC) encoder.

676

CHAPTER 10 & ERROR-CONTROL CODING

where the addition is modulo-2. Equation (10.70) is the parity-check equation, which the
convolutional encoder of Figure 10.26 satisfies at each time step i. -

In Figure 10.25 the input data stream is applied directly to encoder 1, and the pseudo-
randomly reordered version of the same data stream is applied to encoder 2. The systematic
bits (i.e., original message bits) and the two sets of parity-check bits generated by the two
encoders constitute the output of the turbo encoder. Although the constituent codes are
convolutional, in reality turbo codes are block codes with the block size being determined
by the size of the interleaver. Moreover, since both RSC encoders in Figure 10.25 are
linear, we may describe turbo codes as linear block codes.

The block nature of the turbo code raises a practical issue: How do we know the
beginning and the end of a code word? The common practice is to initialize the encoder
to the all-zero state and then encode the data. After encoding a certain number of data
bits 2 number of tail bits are added so as to make the encoder return to the all-zero state
at the end of each block; thereafter the cycle is repeated. The termination approaches of
turbo codes include the following:

» A simple approach is to terminate the first RSC code in the encoder and leave the
sccond one unterminated. A drawback of this approach is that the bits at the end of
the block due to the second RSC code are more vulnerable to noise than the other
bits. Experimental work has shown that turbo codes exhibit a leveling off in perfor-
mance as the SNR increases. This behavior is not like an error floor, but it has the
appearance of an error floor compared to the steep drop in error performance at low
SNR. This error floor is affected by a number of factors, the dominant one of which
is the choice of interleaver.

» A more refined approach*® is to terminate both constituent codes in the encoder in
a symmetric manner. Through the combined use of a good interleaver and dual
termination, the error floor can be reduced by an order of magnitude compared to
the simple termination approach.

In the original version of the turbo encoder, the parity-check bits generated by the
two encoders in Figure 10.25 were punctured priot to data transmission over the channel
to maintain the rate at 1/2. A punctured code is constructed by deleting certain parity
check bits, thereby increasing the data rate. Puncturing is the inverse of extending a code.
It should, however, be emphasized that the use of a puncture map is not a necessary
requirement for the generation of turbo codes.

The novelty of the parallel encoding scheme of Figure 10.25 is in the use of recursive
systematic convolutional (R5C) codes and the introduction of a pseudo-tandom interleaver
between the two encoders. Thus a turbo code appears essentially random to the channel
by virtue of the pseudo-random interleaver, yet it possesses sufficient structure for the
decoding to be physically realizable. Coding theory asserts that a code chosen at random
is capable of approaching Shannon’s channel capacity, provided that the block size is
sufficiently large.'* This is indeed the reason behind the impressive petformance of turbo
codes, as discussed next.

& PERFORMANCE OF TURBO CODES

Figure 10.27 shows the error performance of a 1/2 rate, turbo code with a large block size
for binary data transmission over an AWGN channel.’® The code uses an interleaver of

10.8 Turbo Codes 677

10°
—— Shannon limit
107+ - -+ Uncoded
= Turbo code
1072
=
s
g 1097
&
=
1074
1078
1076 : 1 3 L L 1
-4 -2 o] 2 4 3 8 10

Ey/No, dB
FIGURE 10.27 Noise performances of 1/2 rate, turbo code and uncoded transmission for

AWGN channel; the figure also includes Shannon’s theoretical limit on channel capacity for code
rate r = 1/2.

size 65,536 and a BCJR-based decoder; details of this decoder are presented later in the
section. Eighteen iterations of turbo decoding were used in the computation.

For the purpose of comparison, Figure 10.27 also includes two other curves for the
same AWGN channel:

Uncoded transmission (i.e., code rate r = 1).
& Shannon’s theoretical limit for code rate 1/2, which follows from Figure 9.18b.

From Figure 10.27, we may draw two important conclusions:

1. Although the bit error rate for the turbo-coded transmission is significantly higher
than that for uncoded transmission at low E,/Njy, the bit error rate for the turbo-
coded transmission drops very rapidly once a critical value of E,/N, has been
reached.

2. At a bit error rate of 1075, the turbo code is less than 0.5 dB from Shannon’s theo-
retical limit.

Note, however, attaining this highly impressive performance requires that the size of
the interleaver, or, equivalently, the block length of the turbo code, be large. Also, the
large number of iterations needed to improve performance increases the decoder latency.
This drawback is due to the fact that the digital processing of information does not lend
itself readily to the application of feedback, which is a distinctive feature of the turbo
decoder.

Now that we have an appreciation for the impressive performance of turbo codes,
the stage is set for a discussion of how turbo decoding is actually performed.

2 TurRBO DECODING

Turbo codes derive their distinctive name from analogy of the decoding algorithm to the
“turbo engine” principle. Figure 10.284 shows the basic structure of the turbo decoder. It
operates on noisy versions of the systematic bits and the two sets of parity-check bits in
two decoding stages to produce an estimate of the original message bits.

678

CBAPTER

10 ErrOR-CONTROL COBING

De-interleaver

Decoder Decoder
stage 1 — Interleaver stage 2

Noisy
sustematic o——————3+
bits u

Noisy
parity-check
bits &3

De-interleaver

Hard limiter

Decoder bits
X

Noisy
parity-check ©
bits £,

@
Close switch at time step » =0 and
set L) =0

Hard
limiter

Stage 2

2]

FiGURE 10.28 (a) Block diagram of turbo decoder. (b) Extrinsic form of turbo decoder, where I
stands for interleaver, D for de-interleaver, and BCJR for BCJR algorithm for log-MAP decoding.

Each of the two decoding stages uses a BCJR algorithm,"” which was originally

invented by Bahl, Cocke, Jelinek, and Raviv (hence the name) to solve a maximum a
posteriori probability (MAP) detection problem. The BCJR algorithm differs from the
Viterbi algorithm in two fundamental respects:

1.

The BCJR algorithm is a soft input—soft output decoding algorithm with two recur-
sions, one forward and the other backward, both of which involve soft decisions. In
contrast, the Viterbi algorithm is a soft input—hard output decoding algorithm, with
a single forward recursion involving soft decisions; the recursion ends with a hard
decision, whereby a particular survivor path among several ones is retained. In com-
putational terms, the BCJR algorithm is therefore more complex than the Viterbi
algorithm because of the backward recursion.

The BCJR algorithm is a MAP decoder in that it minimizes the bit errors by esti-
mating the g posteriori probabilities of the individual bits in a code words to recon-
struct the original data sequence, the soft outputs of the BCJR algorithm are hard-
limited. On the other hand, the Viterbi algorithm is a maximum likelihood sequence
estimator in that it maximizes the likelihood function for the whole sequence, not
each bit. As such, the average bit error rate of the BCJR algorithm can be slightly
better than the Viterbi algorithm; it is never worse.

Most important, formulation of the BCJR algorithm rests on the fundamental assumptions

that

(1) the channel encoding, namely, the convolutional encoding performed in the trans-

mitter, is modeled as a Markov process, and (2) the channel is memoryless. In the context
of our present discussion, the Markovian assumption means that if a code can be repre-

10.8 Turbo Codes 679

sented as a trellis, then the present state of the trellis depends only on the past state and
the input bit. (A mathematical treatment of the BCJR algorithm is given later in this
section,)

Before proceeding to describe the operation of the two-stage turbo decoder in Figure
10.284, we find it desirable to introduce the notion of extrinsic information. The most
convenient representation for this concept is as a log-likelihood ratio, in which case ex-
trinsic information is computed as the difference between two log-likelihood ratios as
depicted in Figure 10.29. Formally, extrinsic information, generated by a decoding stage
for a set of systematic {message) bits, is defined as the difference between the log-likelihood
ratio computed at the output of that decoding stage and the intrinsic information repre-
sented by a log-likelihood ratio fed back to the input of the decoding stage. In effect,
extrinsic information is the incremental information gained by exploiting the dependencies
that exist between a message bit of interest and incoming raw data bits processed by the
decoder.

On this basis, we may depict the flow of information in the two-stage turbo decoder
of Figure 10.284 in a symmetric extrinsic manner as shown in Figure 10.28b. The first
decoding stage uses the BCJR algorithm to produce a soft estimate of systematic bit x;,
expressed as the log-likelihood ratio

Lix) = 1og(P(x' 1]u, &, fl(x”), i=1,2,...,k (10.71)
Plx; = O[u, §, L(x))

where u is the set of noisy systematic bits, £, is the set of noisy parity-check bits generated

by encoder 1, and ,(x) is the extrinsic information about the set of message bits x derived
from the second decoding stage and fed back to the first stage. Assuming that the k£ message
bits are statistically independent, the total log-likelihood ratio at the output of the first
decoding stage is therefore

k
Lix) = 2 Lix) (10.72)
=1

Hence, the extrinsic information about the message bits derived from the first decoding
stage is ‘

lix) = hix) — Lx) (10.73)

where L,(x) is to be defined.

Before application to the second decoding stage, the extrinsic information [(x) is re-
ordered to compensate for the psuedo-random interleaving introduced in the turbo en-
coder. In addition, the noisy parity-check bits £, generated by encoder 2 are used as input.
Thus by using the BCJR algorithm, the second decoding stage produces a more refined

Other 5 Soft-input/soft-output +(%) 5 Extrinsic
information Intrinsic decoder infarmation

information

Raw
data

FIGURE 10.29 Illustrating the concept of extrinsic information.

680

CHAPTER 10 2 Ernor-ContTrROL CODING

soft estimate of the message bits x. This estimate is re-interleaved to produce the total log-

likelihood ratio I,(x). The extrinsic information L(x) fed back to the first decoding stage
is therefore

bhx) = Lix)- 1(x) (10.74)

where 71(x) is itself defined by Equation (10.73), and L,(x) is the log-likelihood ratio com-
puted by the second stage. Specifically, for the jth element of the vector x, we have

Plx; = 1|u, &, il(x))) .
Lix) =1 L es S =1 2,« e .
(%) 0g2<P(xj = 0], &, 1y(x)) ’ ! ’ : 1073)

Through the application of l;(x) to the first stage, the feedback loop around the pair of
decoding stages is thereby closed. Note that although in actual fact the set of noisy sys-
tematic bits u is only applied to the first decoding stage as in Figure 10.284, by formulating
the information flow in the symmetric extrinsic manner depicted in Figure 10.286 we find
that u is, in effect, also applied to the second decoding stage. -

An estimate of the message bits x is computed by hard-limiting the log-likelihood
ratio I»(x) at the outpur of the second stage, as shown by

% = sgn(h(x)) (10.76)

where the signum function operates on each element of L{x) individually.

To initiate the turbo decoding algorithm, we simply set I;(x) = 0 on.the first itera-
tion of the algorithm; see Figure 10.285.

The motivation for feeding only extrinsic information from one stage to the next in
the turbo decoder of Figure 10.28 is to maintain as much statistical independence between
the bits as possible from one iteration to the next, The feedback decoding strategy described
herein implicitly relies on this assumption. If this assumption of statistical independence
is strictly true, it can be shown that the estimate £ defined in Equation (10.76) approaches
the MAP solution as the number of iterations approaches infinity.'® The assumption of
statistical independence appears to be close to the truth in the vast majority of cases en-
countered in practice.

@ THE BCJR ALGORITHM

For a discussion of turbo decoding to be complete, a mathematical exposition of the BCJR
algorithm for MAP estimation is in order.

Let x(t) be the input to a trellis encoder at time ¢. Let y() be the corresponding output
observed at the receiver. Note that y{¢) may include more than one observation; for ex-
ample, a rate 1/n code produces # bits for each input bit, in which case we have an
n-dimensional observation vector. Let the observation vector be denoted by

Yan = [)’(1),)’(2), eres)’(f)]

Let A,,(f) denote the probability that a state s(z) of the trellis encoder equals 7, where
m=1,2,..., M. We may then write

M) = Pls(z)|y] (10.77)

10.8 Turbo Codes 681

where s(t) and A(z) are both M-by-1 vectors. Then, for a rate 1/x linear convolutional code
with feedback as in the RSC code, the probability that a symbol “1” was the message bit
is given by

Plx(t) = 1]y) = 2 Af®) (10.78)

SEFy

where %, is the set of transitions that correspond to a symbol “1” at the input, and A,(#)
is the s-component of A(t).
Define the forward estimation of state probabllmes as the M-by-1 vector

aft) = P(s(t) |y (10.79)

where the observation vector y,, is defined above. Also define the backward estimation
of state probabilities as the M-by-1 vector

B(®) = P(s(t)] yisi) {10.80)
where
Yy = [}'(f), }'(t + 1): veey }'(k)]

The vectors «(z) and B(2) are estimates of the state probabilities at time ¢ based on the past
and future data, respectively. We may then formulate the separability theorem as follows:

The state probabilities at time # are related to the forward estimator a(#) and back-

ward estimator B(t) by the vector

%
[l extz) - B(2) Il

where a(t) - B(#) is the vector product of (z) and B(t), and | e(t) - B(#) || is the
L, norm of this vector product.

Al) = (10.81)

The vector product et} - B() (not to be confused with the inner product) is defined in
terms of the individual elements of «(¢) and B(z) by

o, (t)By(2)
a(t) - Ble) = aZ(t).BZ(t) (10.82)
a{t)Bu(t)
and the L, norm of a(t) - B(¢) is defined by
() - Ble) 1= 2 mlt)Bumlt) (10.83)

The separability theorem says that the state distribution at time ¢ given the past is
independent of the state distribution at time # given the future, which is intuitively satisfying
recalling the Markovian assumption for channel encoding, which is basic to the BCJR
algorithm. Moreover, this theorem provides the basis of a simple way of combining the
forward and backward estimates to obtain a complete description of the state probabilities.

To proceed further, let the state transition probability at time ¢ be defined by

Yo m(t) = Pls(t] = m, y(t)|s(t — 1) = m') (10.84)

682

CHAPTER 10 # ErRoR-CoNTROL CODING

and denote the M-by-M matrix of transition probabilities as
L) = (i8] (10.85)

We may then formulate the recursion theorem as follows:

The forward estimate @(t) and backward estimate B(t) are computed recursively as

ol — 1T

T, —
“ =TT =t

(10.86)

and

i+ 1)B@ + 1)

TITe+ 1B+ O, (10.87)

B

where the superscript T denotes matrix transposition.

The separability and recursion theorems togéther define the BCJR algorithm for the
computation of a posteriori probabilities of the states and transitions of a code trellis,
given the observation vector. Using these estimates, the likelihood ratios needed for turbo
decoding may then be computed by performing summations over selected subsets of states
as required. .

10.9 Computer Experiment:
Taurbo Decoding

Two properties constitute the hallmark of turbo codes:

Property 1:

The error performance of the turbo decoder improves with the number of iterations of the
decoding algorithm. This is achieved by feeding extrinsic information from the output of
the first decoding stage to the input of the second decoding stage in the forward path and
feeding extrinsic information from the output of the second stage to the input of the first
stage in the backward path, and then permitting the iterative decoding process to take its
natural course in response to the received noisy message and parity bits.

Property 2

The turbo decoder is capable of approaching the Shannon theoretical limit of channel
capacity in a computationally feasible manner; this property has been demonstrated ex-
perimentally but not yet proven theoretically.

Property 2 requires that the block length of the turbo code be large. Unfortunately, 2
demonstration of this property requires the use of sophisticated implementations of the
turbo decoding algorithm that are beyond the scope of this book. Accordingly, we focus
our attention on a demonstration of Property 1 in this computer experiment.

So, as the primary objective of this computer experiment, we wish to use the log-
MAP implementation of the BCJR algorithm to demonstrate Property 1 of turbo decoding.

10.10 Low-Density Parity-Check Codes 683

1071 . : . . .
1072p 2 iterations
= 3 iterations

107V
[+
& 5 iterations

10~4L 8 iterations

10 iterations
1075,
1078 . .
1 15 2 25
E, /N, dB

FiGURE 10.30 Results of the computer experiment on turbo decoding, for increasing number of
iterations.

The only channel impairment assumed in the experiment is additive white Gaussian noise.
Details of the turbo encoder and decoder are as follows:
Turbo Encoder (described in Figure 10.25):

Encoder 1: convolutional encoder [1, 1, 1]
Encoder 2: convolutional encoder [1, 0, 1]
Block (i.e., interleaver) length: 1,200 bits

Turbo Decoder (described in Figure 10.28):
The BCJR algorithm for log-MAP decoding.

The experiment was carried out for E,/N, = 1, 1.5, 2, and 2.5 dB, with varying
number of iterations at each E,/Ng. For each trial of the experiment, the number of bit
errors was calculated after accumulating a total of 20 blocks of data (each 1,200 bits long)
that were noise-corrupted. The probability of error was then evaluated as the ratio of bit
errors to the total number of encoded bits. Note that in this calculation, many of the blocks
of encoded bits were correctly decoded.

The results of the experiment are plotted in Figure 10.30. The following observations
can be made from this figure:

1. For a given E,/N,, the probability of error decreases with increasing number of
iterations, confirming Property 1 of turbo decoding.
2. After eight iterations, there is no significant improvement in decoding performance.

3. For a fixed number of iterations, the probability of error decreases with increasing
E,/N,, which is to be expected.

§ 10.10 Low-Density Parity-Check Codes"

Turbo codes, discussed in Section 10.8, and low-density parity-check (LDPC) codes, dis-
cussed in this section, belong to a broad family of error-control coding techniques called

684

CHAPTER 10 ERROR-CONTROL CODING

compound codes. The two most important advantages of LDPC codes over turbo codes
are:

® Absence of low-weight code words.
¥ Iterative decoding of lower complexity.

With regard to the issue of low-weight code words, we usually find that a small
number of code words in a turbo code are undesirably close to the given code word. Due
to this closeness in weights, once in a while the channel noise causes the transmitted code
word to be mistaken for a nearby code word. Indeed, it is this behavior that is responsible
for the error floor (typically around a bit error rate of 107 to 107°) that was mentioned
earlier. In contrast, LDPC codes can be easily constructed so that they do not have such
low-weight code words, and they can therefore achieve vanishingly small bit error rates,
The error-floor problem in turbo codes can be alleviated by careful design of the
interleaver.

Turning next to the issue of decoding complexity, we note that the computational
complexity of a turbo decoder is dominated by the BCJR algorithm, which operates on
the trellis for the convolutional code used in the encoder. The number of computations in
each recursion of the BCJR algorithm scales linearly with the number of states in the trellis,
Commonly used turbo codes employ trellises with 16 states or more. In contrast, LDPC
codes use a simple parity-check trellis that has just two states. Consequently, the decoders
for LDPC codes are significantly simpler than those for turbo decoders. Moreover, being
parallelizable, LDPC decoding may be performed at greater speeds than turbo decoding.

However, a practical objection to the use of LDPC codes is that for large block
lengths, their encoding complexity is high compared to turbo codes.

ConsTrUCTION OF LDPC CODES

LDPC codes are specified by a parity-check matrix denoted by A, which is sparse; that is,
it consists mainly of Os and a small number of 1s. In particular, we speak of (n, 1., #,)
LDPC codes, where 7 denotes the block length, £, denotes the weight (i.e., number of 1s)
in each column of the matrix A, and ¢, denotes the weight of each row with ¢, > ¢,. The
rate of such a LDPC code is

r=1--—= (10.88)
whose validity may be justified as follows. Let p denote the density of 1s in the parity-
check matrix A. Then, following the terminology introduced in Section 10.3, we may set

t.=pln— k)
and
t, = pn

where (# — k) is the number of rows in A and 7 is the number of columns (i.e., the block
length). Therefore, dividing ¢ by ¢,, we get

10.10 Low-Density Parity-Check Codes 685

By definition, the code rate of a block code is k/n, hence the result of Equation (10.88)
follows. For this result to hold, however, the rows of A must be linearly independent.

The structure of LDPC codes is well portrayed by bipartite graphs. Figure 10.31
shows such a graph for the example code of » = 10, t. = 3, and ¢, = 5. The left-hand
nodes in the graph of Figure 10.31 are varigble nodes, which correspond to elements of
the code word. The right-hand nodes of the graph are check nodes, which correspond to
the set of parity-check constraints satisfied by code words in the code. LDPC codes of the
type exemplified by the graph of Figure 10.31 are said to be regular in that all the nodes
of a similar kind have exactly the same degree. In the example graph of Figure 10.31, the
degree of the variable nodes is 2, = 3, and the degree of the check nodes is z, = 5. As the
block length »# approaches infinity, each check node is connected to a vanishingly small
fraction of variable nodes, hence the term low-density.

The matrix A is constructed by putting 1s in A at random, subject to the regularity
constraints:

¥ Each column contains a small fixed number, £, of 1s.
» Each row contains a small fixed number, #,, of 1s.

In practice, these regularity constraints are often violated slightly in order to avoid having
linearly dependent rows in the parity-check matrix A.

Unlike the linear block codes discussed in Section 10.3, the parity-check matrix A of
LDPC codes is not systematic (i.e., it does not have the parity-check bits appearing in
diagonal form), hence the use of a symbol different from that used in Section 10.3. Nev-
ertheless, for coding purposes, we may derive a generator matrix G for LDPC codes by
means of Gaussian elimination performed in modulo-2 arithmetic; this procedure is illus-
trated later in Example 10.9. Following the terminology introduced in Section 10.3, the
1-by-n code vector ¢ is first partitioned as

c=[bim

Variable
nodes

FIGURE 10.31 Bipartite graph of the (10, 3, 5) LDPC code.

686

CHAPTER 10 8 ERROR-CONTROL CODING

where m is the k-by-1 message vector, and b is the (#-k)-by-1 parity vector; see Equation
(10.9). Correspondingly, the parity-check matrix A is partitioned as

A
AT = ... (10.89)

where A, is a square matrix of dimensions (1-k) X (n-k), and A; is a rectangular matrix
of dimensions k X (n-k); transposition symbolized by the superscript T is used in the
partitioning of matrix A for convenience of presentation. Imposing the constraint of Equa-
tion (10.16) on the LDPC code, we may write

Ay
[b: m]| .. =0
A;
or, equivalently,
bA; + mA, =0 (10.90)

Recall from Equation (10.7) that the vectors m and b are related by
b = mP

where P is the coefficient matrix, Hence, substituting this relation into Equation (10.90),
we readily find that, for any nonzero message vector m, the coefficient matrix of LDPC
codes satisfies the condition

PA/ + A, =0

which holds for all nonzero message vectors and, in particular, for m in the form
[0:-010--- 0] that will isolate individual rows of the generator matrix.
Solving this equation for matrix P, we get

P = AA! (10.91)

where A7 is the inverse of matrix A,, which is naturally defined in modulo-2 arithmetic.
Finally, the generator matrix of LDPC codes is defined by

G=[P:L]

10.92
= [AAT 1] (1052

where I, is the k-by-k identity matrix; see Equation (10.12).

It is important to note that if we take the parity-check matrix A for some arbitrary
LDPC code and just pick (# — k) columns of A at random to form a square matrix Aq,
there is 1o guarantee that A, will be nonsingular (L., the inverse A7 will exist), even if
the rows of A are linearly independent. In fact, for a typical LDPC code with large block
length #, such a randomly selected A, is highly unlikely to be nonsingular, because it is
very likely that at least one row of A; will be all 0s. Of course, when the rows of A are
linearly independent, there will be some set of {(# — k) columns of A that will make 2
nonsingular A,, as illustrated in Example 10.9. For some construction methods for LDPC
codes the first (2 — k) columns of A may be guaranteed to produce a nonsingular A, of
at least do so with a high probability, but that is ot true in general.

10.10 Low-Density Parity-Check Codes 687

b Exampre 10.9 (10, 3, 5) LDPC Code

Consider the bipartite graph of Figure 10.31 pertaining to a (10, 3, 5) LDPC code. The parity-
check matrix of the code is defined by

-

il
(= N =)
=T = T I S =Y
(== = =]
===
(=R A~ -]
[T e R =
R o= QO =mo
_-O O R O e
~— _ o R oo

———— | ——
AT A7
which appears to be random, while maintaining the regularity constraints: 2. = 3 and £, = 5.
Partitioning the matrix A in the manner described in Equation (10.89):

101 0 1 07
110100
010110
A =
100101
011010
1 011 0 o0l
0 1 01 0 1]
010011
A=
101001
0 01 01 1]

To derive the inverse of matrix A,, we first use Equation (10.90) to write

1 01010
110100
010110
[boy b1y b2y b3, bay bsI|1 0 0 1 0 1| = [u, 0y, 2, t43, tha, ts
b 011010 u = mA,
1 0110 0

A

where we have introduced the vector u to denote the matrix product mA,. By using Gaussian
elimination, the matrix A, is transformed into lower diagonal form (i.., all the elements above
the main diagonal are zero), as shown by

A -

-
C = OoR Rk O
oo R Rk oo
- -]
O Rk oo oo
oo oo oo

688 CHAPTER 10 2 ERROR-CONTROL CODING

This transformation is achieved by the following modulo-2 additions performed on the co)-
umns of square matrix Ay:

Columns 1 and 2 are added to column 3.
Column 2 is added to column 4.

Columns 1 and 4 are added to column 3.
Columns 1, 2 and 5 are added to column 6.

L2 A A

Correéspondingly, the vector u is transformed as
u > [ug, ty, tho + 281 + bpy Uy + Uz, thg + U + Uay Yo + Uy + 1y + us)

Accordingly, premultiplying the transformed matrix A, by the parity vector b, using successive
eliminations in modulo-2 arithmetic working backwards, and putting the solutions for the
elements of the parity vector b in terms of the elements of the vector u in matrix form, we get

001011
101001
111000
[t4o, #1, a2, th3, gy 4s]] 1 1 0 0 1 0O = [bo, by, by, bs, b4, bs]
Aoy —_—
u 010011 b
111101
i
At
The inverse of matrix A, is therefore
0 01011
101001
111000
A7l =
110010
010011
111101

The matrix product A;A7" is (using the given value of A, and the value of A;? just found)

100110
aaio|0 00111
001110
010110

Finally, using Equation (10.92), the generator of the (10, 3, 5) LDPC code is

100110:1000
000111:0100
G=|001110:0010

0101 10:000 1
AAT I

It is important to recognize that the LDPC code described in this example is intended
only for the purpose of illustrating the procedure involved in the generation of such a code.
In practice, the block length # is orders of magnitude larger than that considered in this
example. Moreover, in constructing the matrix A, we may constrain all paits of columns to

10.10 Low-Density Parity-Check Codes 689

have a matrix overlap (i.e., inner product of any two columns in matrix A) not to exceed 1;
such a constraint, over and above the regularity constraints, is expected to improve the per-
formance of LDPC codes. Unfortunately, with a small block length as that considered in this
example, it is difficult to satisfy this additional requirement. <

MiNniMmum DiSTANCE OF LDPC CobDEs

In practice, the block length of a LDPC code is large, ranging from 10° to 10°, which
means that the number of code words in a particular code is correspondingly large. Con-
sequently, the algebraic analysis of LDPC codes is rather difficult. It is much more pro-
ductive to perform a statistical analysis on an ensemble of LDPC codes. Such an analysis
permits us to make statistical statements about certain properties of member codes in the
ensemble. Moreover, an LDPC code with these properties can be found with high prob-
ability by a random selection from the ensemble.

Among these properties, the minimum distance of the member codes is of particular
interest. From Section 10.3 we recall that the minimum distance of a linear block code is,
by definition, the smallest Hamming distance between any pair of code vectors in the code.
Over an ensemble of LDPC codes, the minimum distance of a member code is naturally a
random variable. Flsewhere®® it is shown that as the block length # increases, for fixed
t. = 3 and ¢, > ¢, the probability distribution of the minimum distance can be overbounded
by a function that approaches a unit step function at a fixed fraction A,, of the block
length #. Thus, for large #, practically all the LDPC codes in the ensemble have a minimum
distance of at least # A, .. Table 10.10 presents the rate » and A,, of LDPC codes for
different values of the weight-pair (#,, 2,). From this table we see that forz, = 3 and ¢, = 6
the code rate 7 attains its highest value of 1/2 and the fraction A, attains its smallest value,
hence the preferted choice of ., = 3 and ¢, = 6 in the design of LDPC codes.

PROBABILISTIC DECODING oF LDPC CODES

At the transmitter, a message vector m is encoded into a code vector ¢ = mG, where G is
the generator matrix for a specified weight-pair (t_, t,} and therefore minimum distance
dmin. The vector ¢ is transmitted over a noisy channel to produce the received vector

r=c+t+e

where e is the error vector due to channel noise; see Equation (10.17). By construction,
the matrix A is a parity matrix of the LDPC code; that is, AG” = 0. Given the received

TABLE 10.10° The rate v and
fractional term A, of LDPC codes
for varying weights t. and ¢,

te t, Rater A,

5 6 0.167 0.255
4 5 0.2 0.210
3 4 0.25 0.122
4 6 0.333 0.129
3 S 0.4 0.044
3 6 0.5 0.023

*Adapted from Gallager (1962) with permission of the JEEE.

690 CHAPTER 10 & ERROR-CONTROL CODING

vector r, the bit-by-bit decoding problem is to find the most probable vector € that satisfies
the condition ¢A” = 0.

In what follows, a bit refers to an element of the received vector r, and a check refers
to a row of matrix A. Let $(i) denote the set of bits that participate in check 7. Let $(;)
denote the set of checks in which bit j participates. A set $(7) that excludes bit j is denoted
by $(i)Vj. Likewise, a set $(;) that excludes check i is denoted by $(j)\i.

The decoding algorithm has two alternating steps: horizontal step and vertical step,
which run along the rows and columns of matrix A, respectively. In the course of these
steps, two probabilistic quantities associated with nhonzero elements of matrix A are alter-
nately updated. One quantity, denoted by P3, defines the probability that bit ; is symbol
x (i.e., symbol 0 or 1), given the information derived via checks performed in the horizonta]
step, except for check 7. The second quantity, denoted by O3, defines the probability that
check i is satisfied, given that bit j is fixed at the value x and the other bits have the
probabilities Py : j* € $(i)y).

The LDPC decoding algorithm then proceeds as follows:*’

Initialization
¢ The variables P} and P} are set equal to the a priori probabilities p} and p} of symbols
0 and 1, respectively, with p? + p} = 1.

Horizontal Step
In the horizontal step of the algorithm, we run through the checks i. Define

AP, = P} — P}
For each weight-pair (i, j), compute
AQy = II ap,
jesuy
Hence, set
1

Q3 = 2 (1 +AQjy)

1
) =71~ A0)

Vertical Step

In the vertical step of the algorithm, the values of the probabilities P§ and P} ate
updated using the quantities computed in the horizontal step. In particular, for each bit j,
compute

0 _ 0 0
Py = a;p; H Qi
P EF(N

£

ap} H o)

SN

1
P}

where the scaling factor «; is chosen to make

0 1 —
P} + P} =

§ 10.11

10.11 Irregular Codes 691

In the vertical step, we may also update the pseudo-posterior probabilities:

P} = ap] H 0
=$(7)

i

P =apt I1 0}

eg(j)
where «; is chosen to make
PP+P =1

The quantities obtained in the vertical step are used to compute a tentative estimate
&. If the condition AT = 0 is satisfied, the decoding algorithm is terminated. Otherwise,
the algorithm goes back to the horizontal step. If after some maximum number of iterations
(e.g., 100 or 200) there is no valid decoding, a decoding failure is declared. The decoding
procedure described herein is a special case of the general low-complexity sum-product
algorithm.

Simply stated, the sum-product algorithm passes probabilistic quantities between the
check nodes and variable nodes of the bipartite graph. By virtue of the fact that each
parity-check constraint can be represented by a simple convolutional coder with one bit
of memory, we find that LDPC decoders are simpler to implement than turbo decoders,
as stated earlier.

In terms of performance, however, we may say the following in light of experimental
results reported in the literature: Regular LDPC codes do not appear to come as close to
Shannon’s limit as do their turbo code counterparts.

Irregular Codes

The turbo codes discussed in Section 10.8 and the LDPC codes discussed in Section 10.10
are both regular codes, each in its own individual way. The error-correcting performance
of both of these codes over a noisy channel can be improved substantially by using their
respective irregular forms. .

In a standard turbo code with its encoder as shown in Figure 10.25, the interleaver
maps each systematic bit to a unique input bit of convolutional encoder 2. In contrast,
irregular turbo codes™ use a special design of interleaver that maps some systematic bits
to multiple input bits of the convolutional encoder. For example, each of 10 percent of
the systematic bits may be mapped to eight inputs of the convolutional encoder instead of

Systematic

bits x
Irregular Encoder Parity-check

interleaver 1 1 bits z;

Message
bits o—=>—e N Output
X

Irregular Encoder Parity-check

> interleaver 2 > 2 bits z,

Figure 10.32 Block diagram of irregular turbo encoder.

692

CHAPTER 10 Enrnror-CONTROL CODING

a single one. As shown in Figure 10.32, similar irregular interleavers are used in botl
convolutional encoding paths to generate the parity-check bits z, and z, in response to the
message bits x. Irregular turbo codes are decoded in a similar fashion to regular turbg
codes.

To construct an irregular LDPC code,*® the degrees of the variable and check nodes
in the bipartite graph are chosen according to some distribution. For example, we may
have an irregular LDPC code with the following graphical representation:

® One half of the variable nodes have degree 5 and the other half of the variable nodes
have degree 3.

¥ One half of the check nodes have degree 6 and the other half of the check nodes
have degree 8.

For a given block length and a given degree sequence, we define an ensemble of codes by
choosing the edges (i.e., the connections between the variable and check nodes) in a ran-
dom fashion. Specifically, the edges emanating from the variable nodes are enumerated in
some arbitrary order, and likewise for the edges emanating from the check nodes.

Figure 10.33 plots the error performances of the following codes:?*

& Irregular LDPC code: £ = 50,000, = 100,000, rate = 1/2
Turbo code (regular): kb = 65,536, # = 131,072, and rate = 1/2
» Irregular turbo code: £ = 65,536, n = 131,072, and rate = 1/2

~ where £ is the number of message bits and is the block length. The generator polynomials

for the two convolutional encoders in the regular/irregular turbo codes are as follows:

Encoder 1: g(D) = 1 + D*
Encoder 2: g(D) =1+ D + D? + D* + D*

Figure 10.33 also includes the corresponding theoretical limit on channel capacity for code
rate r = 1/2.

10°
e i .
N _
2 L
10- I
g Vo
g 10} %\\ \'
3 0)
: : .
1o S
—— Shannon limit [|
- — - Regular turbo code I -
10-5L |- - - - hregular turbo code 1
—— Irregular LDPC code |
108 . "

-1 08 06 04 02 0 02 04 06 08
Ej /Ny, dB

FIGURE 10.33 Noise performances of regular turbo code, irregular turbo code and irregular
low-density parity-check (LDPC) code, compared to the Shannon limit for code rate r = 1/2.

10.i2 8§ y and Discussi 693

Based on the results presented in Figure 10.33, we may make the following
observations:

The irregular LDPC code outperforms the regular turbo code in that it comes closer
to Shannon’s theoretical limit by 0.175 dB.

» Among the three codes displayed therein, the irregular turbo code is the best in that
it is just 0.213 dB away from Shannon’s theoretical limit.

£ 10.12 Summary and Discussion

In this chapter, we studied error-control coding techniques that have established themselves
as indispensable tools for reliable digital communication over noisy channels. The effect
of errors occurring during transmission is reduced by adding redundancy to the data prior
to transmission in a controlled manner. The redundancy is used to enable a decoder in the
receiver to detect and correct errors.

Error-control coding techniques may be divided into two broadly defined families:

1. Algebraic codes, which rely on abstract algebraic structure built into the design
of the codes for decoding at the receiver. Algebraic codes include Hamming codes,
maximal-length codes, BCH codes, and Reed-Solomon codes. These particular
codes share two properties:

Linearity property, the sum of any two code words in the code is also a code word.
Cyclic property, any cyclic shift of a code word is also a code word in the code.
Reed-Solomon codes are very powerful codes, capable of combatting both random
and burst errors; they find applications in difficult environments such as deep-space
communications and compact discs.

2. Probabilistic codes, which rely on probabilistic methods for their decoding at the
receiver. Probabilistic codes include trellis codes, turbo codes, and low-density parity-
check codes. In particular, the decoding is based on one or the other of two basic
methods, as summarized here:

Soft input—hard output, which is exemplified by the Viterbi algorithm that performs
maximum likelihood sequence estimation in the decoding of trellis codes.

Soft input-soft output, which is exemplified by the BCJR algorithm that performs
maximum g posteriori estimation on a bit-by-bit basis in the decoding of turbo codes,
or a special form of the sum-product algorithm in the decoding of low-density parity-
check codes.

Trellis codes combine linear convolutional encoding and modulation to permit significant
coding gains over conventional uncoded multilevel modulation without sacrificing band-
width efficiency. Turbo codes and low-density parity-check codes share the following
properties:

Random encoding of a linear block kind.
& Error performance within a hair’s breadth of Shannon’s theoretical limit on channel
capacity in a physically realizable fashion.

In practical terms, turbo codes and low-density parity-check codes have made it possible
to achieve coding gains on the order of 10 dB, which is unmatched previously. These
coding gains may be exploited to dramatically extend the range of digital communication
receivers, substantially increase the bit rates of digital communication systems, or signifi-

694 CHAPTER 10 @ ErROR-CONTROL CODING

cantly decrease the transmitted signal energy per symbol. These benefits have significant
implications for the design of wireless communications and deep-space communications,
just to mention two important applications of digital communications. Indeed, turbo codes
have already been standardized for use on deep-space communication links and wireless
communication systems.

g NoOTES AND REFERENCES

1.

For an introductory discussion of error correction by coding, see Chapter 2 of Lucky
(1989); see also the book by Adamek (1991), and the paper by Bhargava (1983). The classic
book on error-control coding is Peterson and Weldon (1972). Error-control coding is also
discussed in the classic book of Gallager (1968). The books of Lin and Costello (1983),
Micheleson and Levesque (1985), MacWilliams and Sloane (1977), and Wilson (1998) are
also devoted to error-control coding. For a collection of key papers on the development of
coding theory, see the book edited by Berlekamp (1974).

. For a survey of various ARQ schemes, see Lin, Costello, and Miller {1984).

3. In medicine, the term syndrome is used to describe a pattern of symptoms that aids in the

10.

11.

12.

diagnosis of a disease. In coding, the error pattern plays the role of the disease and parity-
check failure that of a symptom. This use of syndrome was coined by Hagelbarger (1959).

. The first error-correcting codes (known as Hamming codes) were invented by Hamming

at about the same time as the conception of information theory by Shanmon; for details,
see the classic paper by Hamming (1950).

. For a description of BCH codes and their decoding algorithms, see Lin and Costello {1983,

pp. 141-183) and MacWilliams and Sloane (1977, pp. 257-293). Table 10.6 on binary
BCH codes is adapted from Lin and Costello (1983).

. The Reed-Solomon codes are named in honor of their inventors: see their classic 1960

paper. For details of Reed-Solomon codes, see MacWilliams and Sloane {1977, pp. 294~
306). The book edited by Wicker and Bhargava (1994) contains an introduction to Reed-
Solomon codes, a historical overview of these codes written by their inventors, Irving S.
Reed and Gustave Solomon, and the applications of Reed-Solomon codes to the explora-
tion of the solar system, the compact disc, automatic repeat-request protocols, and spread-
spectrum multiple-access communications, and chapters on other related issues.

_ Convolutional codes were first introduced, as an alternative to block codes, by P. Elias

(1955).

. The term #rellis was introduced by Forney (1973).

. In a classic paper, Viterbi (1967) proposed a decoding algorithm for convolutional codes

that has become known as the Viterbi algorithm. The algorithm was recognized by Forney
(1972, 1973) to be a-maximum likelihood- decoder. Readable accounts of the Viterbi al-
gorithm are presented in Lin and Costello (1983), Blahuc (1990), and Adamek (1991).

Catastrophic convolutional codes are discussed in Benedetto, Biglieri, and Castellani
{1987). Table 10.8 is adapted from their book.

For details of the evaluation of asymptotic coding gain for binary symmetric and binary-
input AWGN channels, see Viterbi and Omura (1979, pp. 242-252) and Lin and Costello
(1983, pp. 322-329).

Trellis-coded modulation was invented by G. Ungerboeck; its historical evolution is de-
scribed in Ungerboeck (1982). Table 10.9 is adapted from this latter paper.
Trellis-coded modulation may be viewed as a form of signal-space coding—a view-

‘ point discussed at an introductory level in Chapter 14 of the book by Lee and Messer-

13.

14.
15.
16.
17.

18.

19.

20.

21.

22.
23.

24.

Notes and References 695

schmitt (1994). For an extensive treatment of trellis~coded modulation, see the books by
Biglieri, Divsalar, McLane, and Simon (1991), and Schlegel (1997).

Turbo codes were originated by C. Berrou and A. Glavieux. Work on these codes was
motivated by two papers on error-correcting codes: Battail (1987), and Hagenauer and
Hoecher (1989). The first description of turbo codes using heuristic arguments was pre-
sented at a conference paper by Berrou, Glavieux, and Thitimajshima {1993); see also
Berrou and Glavieux (1996). For reflections on the early work on turbo codes and subse-
quent developments, see Berrou and Glavieux (1998). .

For a book on the basics of turbo codes, see Heegard and Wicker (1999). Using a
procedure reminiscent of random coding (see Note 15), Benedetto and Montorosi (1996)
have provided partial explanations for the impressive performance of turbo codes.

In two independent studies reported in the papers by McEliece, MacKay, and Cheng
(1998), and Kschischang and Frey (1998), it is shown that turbo decoding duplicates an
algorithm in artificial intelligence due to Pearl (1982), which involves the propagation of
belief. The term belief is another way of referring to a posteriori probability. These two
papers have opened a new avenue of research, which links turbo decoding and learning
machines. For an insightful discussion of turbo codes, see the book by Frey (1998).

A pseudo-random interleaver is basic to the operation of turbo codes. Denenshgaran
and Mondin {1999) present a systematic procedure for designing interleavers (i.e., per-
muters) for turbo codes.

The dual termination of turbo codes is discussed in Guinand and Lodge (1996).
Random coding is discussed in Cover and Thomas (1991}, Section 8.7.
The plots presented in Fig. 10.27 follow those in Fig. 6.8 of the book by Frey (1998).

In the early 1960s, Baum and Welch derived an iterative procedure for solving the param-
eter estimation problem, hence the name Baum-Welch algorithm (Baum and Petrie (1966};
Baum et al. (1970)). In the BCJR algorithm, named after Bahl, Cocke, Jelinek, and Raviv
(1974}, the Baum-Welch algorithm is applied to the problem of soft output, maximum
likelihood decoding of convolutional codes.

The proof that the estimate % in Eq. (10.76) approaches the MAP solution as the number
of iterations approaches infinity is discussed in the paper by Moher and Gulliver (1998).

Low-density parity-check (LDPC) codes were originally discovered by Gallager (1962,
1963). They were rediscovered independently by MacKay and Neal (1995); see also
MacKay (1999).

In the 1960s and for a good while thereafter, the computers available at that time
were not powerful enough to process the long block lengths that are needed to achieve
excellent performance with LDPC codes, hence the lack of interest in their use for over
twenty years.

For a detailed treatment of the statement that the probability distribution of the minimum
distance of an LDPC code approaches a unit step function of the block length for certain
values of weight-pair (2., 2,), see Gallager (1962, 1963).

The decoding algorithm of LDPC codes described herein follows MacKay and Neal (1996,
1997).

Irregular turbo codes were invented by Frey and MacKay (1999).

Irregular LDPC codes were invented independently by MaKay et al. (1999) and Richardson
et al. (1999).

The codes, whose performances are plotted in Fig. 10.34, are due to the following
originators:

& Regular turbo codes: Berrou and Glavieux {1996); Berrou et al. (1995).

¥ Irregular turbo codes: Frey and MacKay (1999).

¥+ Irregular LDPC codes: Richardson et al. (1999).

696 CHAPTER 10 & ERROR-CONTROL CODING

¥ PRORLEMS

Soft-Decision Coding

10.1 Consider a binary input Q-ary output discrete memoryless channel. The channel is said
to be symmetric if the channel transition probability p(j|4) satisfies the condition:

P(/|0)=P(Q—1_)|1)g i=091)"'1Q~1

Suppose that the channel input symbols 0 and 1 are equally likely. Show that the channe]
output symbols are also equally likely; that is,

P())=§, i=0,1,-..,Q-1

10.2 Consider the quantized demodulator for binary PSK signals shown in Fig. 10.3a. The
quantizer is a four-level quantizer, normalized as in Fig. P10.2. Evaluate the transition
probabilities of the binary input-quarternary output discrete memoryless channel so
characterized. Hence, show that it is a symmetric channel. Assume that the transmitted
signal energy per bit is E,, and the additive white Gaussian noise has zero mean and
power spectral density No/2.

Quantizer
output

+3

+1

| |
- 0 a Quantizer
input

-1

—

Figure P10.2

10.3 Consider a binary input AWGN channel, in which the binary symbols 1 and 0 are equally
likely. The binary symbols are transmitted over the channel by means of phase-shift
keying. The code symbol energy is E, and the AWGN has zero mean and power spectral
density No/2. Show that the channel transition probability is given by

(|O)=Lex Ly EEZ —n <y < o
ply Vi P 2)’ N/ I y

Linear Block and Cyclic Codes

10.4 In a single-parity-check code, a single parity bit is appended to a block of k message bits
(my, My, . . . , #z). The single parity bit by is chosen so that the code word satisfies the
even parity rule:

my+my+ oo+ m+ b =0, mod 2

For k = 3, set up the 2* possible code words in the code defined by this rule.

10.5 Compare the paritycheck matrix of the (7, 4) Hamming code considered in Example
10.2 with that of a (4, 1) repetition code.

Problems 697

10.6 Consider the (7, 4) Hamming code of Example 10.2. The generator matrix G and the
parity-check matrix H of the code are described in that example. Show that these two
matrices satisfy the condition

HG" =0
10.7 (a) For the (7, 4) Hamming code described in Example 10.2, construct the eight code

words in the dual code.
{b) Find the minimum distance of the dual code determined in part (a).

10.8 Consider the (5, 1) repetition code of Example 10.1. Evaluate the syndrome s for the
following error patterns:
(a) All five possible single-error patterns
(b) All 10 possible double-error patterns

10.9 For an application that requires error detection only, we may use a nonsystematic code.
In this problem, we explore the generation of such a cyclic code. Let g(X) denote the
generator polynomial, and 7#(X} denote the message polynomial. We define the code
polynomial ¢(X) simply as

dX) = m(X)g(X)
Hence, for a given generator polynomial, we may readily determine the code words in
the code. To illustrate this procedure, consider the generator polynomial for a (7, 4)
Hamming code:
gX) =1+X+Xx°

Determine the 16 code words in the code, and confirm the nonsystematic nature of the
code.

10.10 The polynomial 1 + X" has 1 + X + X* and 1 + X? + X? as primitive factors. In
Example 10.3, we used 1 + X + X as the generator polynomial for a (7, 4) Hamming
code. In this problem, we consider the adoption of 1 + X? + X> as the generator
polynomial. This should lead to a (7, 4) Hamming code that is different from the code
analyzed in Example 10.3. Develop the encoder and syndrome calculator for the gen-
erator polynomial:

gX)=1+X*+X°

Compare your results with those in Example 10.3.
10.11 Consider the (7, 4) Hamming code defined by the generator polynomial

gX)=1+X+X°

The code word 0111001 is sent over a noisy channel, producing the received word
0101001 that has a single error. Determine the syndrome polynomial s{X) for this re-
ceived word, and show that it is identical to the error polynomial e(X).
10.12 The generator polynomial of a (15, 11} Hamming code is defined by
gX)=1+X+X*
Develop the encoder and syndrome calculator for this code, using a systematic form for
the code.

10.13 Consider the (15, 4) maximal-length code that is the dual of the (15, 11) Hamming code
of Problem 10.12. Do the following:
(a) Find the feedback connections of the encoder, and compare your results with those
of Table 7.1 on maximal-length codes presented in Chapter 7.
(b) Find the generator polynomial g(X); hence, determine the output sequence assuming
the initial state 0001. Confirm the validity of your result by cycling the initial state
through the encoder.

698 CaAPTER 10 5 ERROR-CONTROL CODING

10.14 Consider the {31, 15) Reed-Solomon code.
(a) How many bits are there in a symbol of the code?
(b) What is the block length in bits?
(c) What is the minimum distance of the code?
(d) How many symbols in error can the code correct?

Convolutional Codes

10.15 A convolutional encoder has a single-shift register with two stages, (i.e., constraint length
K = 3), three modulo-2 adders, and an output multiplexer. The generator sequences of
the encoder are as follows:

Draw the block diagram of the encoder.
Note: For Problems 10.16-10.23, the same message sequence 10111. .. s used so that
we may compare the outputs of different encoders for the same input.

10.16 Consider the rate r = 1/2, constraint length K = 2 convolutional encoder of Fig. P10.16.
The code is systematic. Find the encoder output produced by the message sequence
10111....

Meduio-2
adder

Input o—
Flip-flop

FiGure P10.16

Qutput

10.17 Figure P10.17 shows the encoder for a rate r = 1/2, constraint length K = 4 convolu-
tional code. Determine the encoder output produced by the message sequence 10111....

! ;——9— Output

FiGURE P10.17

10.18

10.19

10.20

10.21

10.22

10.23

10.24

10.25

10.26

10.27

Problems 699

Consider the encoder of Fig. 10.13b for a rate r = 2/3, constraint length K = 2 con-
volutional code, Determine the code sequence produced by the message sequence
10111....

Construct the code tree for the convolutional encoder of Fig. P10.16. Trace the path

through the tree that corresponds to the message sequence 10111 . . . , and compare the

encoder output with that determined in Problem 10.16.

Construct the code tree for the encoder of Fig. P10.17. Trace the path through the tree

that corresponds to the message sequence 10111..... Compare the resulting encoder

output with that found in Problem 10.17.

Construct the trellis diagram for the encoder of Fig. P10.17, assuming a message sequence

of length 5. Trace the path through the trellis corresponding to the message sequence

10111. ... Compare the resulting encoder output with that found in Problem 10.17.

Construct the state diagram for the encoder of Fig. P10.17. Starting with the all-zero

state, trace the path that corresponds to the message sequence 10111 . .. , and compare

the resulting code sequence with that determined in Problem 10.17.

Consider the encoder of Fig. 10.135.

{a) Construct the state diagram for this encoder.

{b) Starting from the all-zero state, trace the path that corresponds to the message se-
quence 10111. ... Compare the resulting sequence with that determined in Problem
10.18.

By viewing the minimum shift keying (MSK) scheme as a finite-state machine, construct

the trellis diagram for MSK. (A description of MSK is presented in Chapter 6.}

The trellis diagram of a rate-1/2, constraint length-3 convolutional code is shown in

Figure P10.25. The all-zero sequence is transmitted, and the received sequence is

100010000. . . . Using the Viterbi algorithm, compute the decoded sequence.

tate

00 00 00 00 00 00
AN ! N1 \\11)/\\\117/\\11/
Y N N N ~
N hY
~ N N AN AN
o1 N S 11 e 11 Da 11 e
N \
00 W 0o Y o
A 01
10 \

Yo 10l 10710 10”10
1 e N NN

FiGURE P10.25

Consider a rate-1/2, constraint length-7 convolutional code with free distance d... = 10.
Calculate the asymptotic coding gain for the following two channels:

(a) Binary symmetric channel
(b) Binary input AWGN channel

In Section 10.6 we described the Viterbi algorithm for maximum likelihood decoding of
a convolutional code. Another application of the Viterbi algorithm is for maximum
likelihood demodulation of a received sequence corrupted by intersymbol incerference
due to a dispersive channel. Figure P10.27 shows the trellis diagram for intersymbol
interference, assuming a binary data sequence. The channel is discrete, described by the

700

CHAPTER 10 2 ERROR-CONTROL CODING

10.28

finite impulse response (1, 0.1). The received sequence is (1.0, —0.3, —0.7,0,..). Use
the Viterbi algorithm to determine the maximum likelihood decoded version of this
sequence.

-1.1 -1.1
FIGURE P10.27

Figure P10.28 depicts 32-QAM cross constellation. Partition this constellation into eight
subsets. At each stage of the partitioning, indicate the within-subset (shortest) Euclidean
distance.

FiGURE P10.28

10.29 As explained in the Introduction to this chapter, channel coding can be used to reduce

10.30

the E,/N,, required for a prescribed error performance or reduce the size of the receiving
antenna for a prescribed E,/No. In this problem we explore these two practical benefits
of coding by revisiting Example 8.2 in Chapter 8 on the downlink power calculations
for a domestic satellite communication system. In particular, we now assume that the
design of the downlink includes the use of a coding scheme consisting of a rate-1/2
convolutional encoder with length K = 7 and Viterbi decoding. The coding gain of this
scheme is 5.1 dB, assuming the use of soft quantization. Hence do the following:

(a) Recalculate the required E,/N, ratio of the system.

{b) Assuming that the required E,/N, ratio remains unchanged, calculate the reduction
in the size of the receiving dish anterma that is made possible by the use of this
coding scheme in the downlink.

Unlike the convolutional codes considered in this chapter, we recall from Chapter 6 that

the convolutional code used in the voiceband modem V.32 modem is nonlinear. Figure

P10.30 shows the circuit diagram of the convolutional encoder used in this modem; it

uses modulo-2 multiplication and gates in addition to modulo-2 additions and delays.

Explain the reason for nonlinearity of the encoder in Fig. P10.30, and use an example

to illustrate your explanation.

Problems 701

CIA,n Yon
cla’n YSJI
o2 (T T .
N \J 2
N
\
input Mod-2 Qutput
muttiplier
S Jan N oy
L L/ b
Flip-flop Mod-2
adder
YO,n
Figure P10.30
Turbo Codes

10.31 Let #¥ = p/g, and & = plg, be the code rates of RSC encoders 1 and 2 in the turbo
encoder of Fig. 10.25. Find the code rate of the turbo code.

10.32 The feedback nature of the constituent codes in the turbo encoder of Fig. 10.25 has the
following implication: A single bit error corresponds to an infinite sequence of channel
errors. Illustrate this phenomenon by using a message sequence consisting of symbol 1
followed by an infinite number of symbols 0.

10.33 Consider the following generator matrices for rate 1/2 turbo codes:

1+ D+ D?
1+ D>+ D’
’1+D+D2+D3]
1+D*
’1+D+D1+D3+D4]

(a) Construct the block diagram for each one of these RSC encoders.
(b) Setup the parity-check equation associated with each encoder.
10.34 The turbo encoder of Fig. 10.25 involves the use of two RSC encoders.
(a) Generalize this encoder to encompass a total of M interleavers.
(b) Construct the block diagram of the turbo decoder that exploits the M sets of parity- -
check bits generated by such a generalization.

10.35 Turbo decoding relies on the feedback of extrinsic information. The fundamental prin-
ciple adhered to in the turbo decoder is to avoid feeding a decoding stage information
that stems from the stage itself. Explain the justification for this principle in conceptual
terms.

4-state encoder: gD) = |:1a

8-state encoder: gD) = [1

16-state encoder: gD] = [1

10.36 Suppose a communication receiver consists of two components, a demodulator and a
decoder. The demodulator is based on a Markov model of the combined modulator and

702 CuarTER 10 & Enror-ContROL CODING

channel, and the decoder is based on a Markov model of a forward error correction
code. Discuss how the turbo principle may be applied to construct a joint demodulatoy/
decoder for this system.

Computer Experiment

10.37 In this experiment we continue the investigation into turbo codes presented in Section
10.9 by evaluating the effect of block size on the noise performance of the decoder.
As before, the two convolutional encoders of the turbo encoder are as follows;

Encoder 1: [1, 1, 1]
Encoder 2: [1, 0, 1]

The transmitted E4/Np is 1 dB. The block errors to termination are prescribed not to
exceed 15. -

With this background information, plot the bit error rate of the turbo decoder
versus the number of iterations for two different block (i.e., interleaver) sizes: 200 and
400.

