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p?+p*+p
pr+p2+0p +l) pé
' P +p% +0pt +p3
ps +0p4 +p3
ps_+p“ +0p3 +p?
p-: 3 },3 sz

pi+pd+0p +p

p? +p « Remainder

Here Ry {(p)=p? +p

Hence first row polynomial will be,

pOHR (pr=pleprep = | po+0pd +0pt +0p3 +p2 +p+0!

b} To obtain polynomial for Row 2 (1 =2)

With f =2, equation (3.3.72) becomes,

. =t , This division is given below :

pd+pt s 0p+1 ﬁ?s
p? l-‘t?f +0pd +p2

pi+0p3 +p?
pi+pd +0p2 +p

p+ptp
p34pr+0p+l

p 41« Remainder

Here R; (p)=p +1

Hence second row polynom:ii will be,

5 4 R (7) = p5 sp+l=| Opt ”,s +0p* +0p3 +U_n3 +p+l

.+
¢
7
A
;

T

Information Coding Techniques 3-103

¢} To obtain polynomial for Row 3, (t=3)
With £ =3, equation (3:3.72) becomes,

pif-J p»&
G(p) =~ 535577 - this division is given below :
GO~ P T
P+l
pep+0p 1] p
Piapd 4 0ptp
PJ +0P2 +p
P3+p?aOp+
prap+l
Here Ry (p)=p2 +p +1 !

« Remainder

Hence third row polynomial will be,

—_——
PP+ Ry(p) = pi4p2 +p+l = l Opt +0p5 +pteQpd gp2 -s-p-a-]J
B N

d) To obtain polynomint Jor Row 4, (t=9)
With £ =4, equation (3.3.72) becomes,
-'p—ui = -—-—~—3—-_ this division is given below -
Gp) p3+prsg’
1
PP ep2e0p+1 ) pi
?3 +p? 4 Op+1

P?+0p +1 < Remainder
Here Ry (p) =p2 + Op+1

Hence fourth row polynomial will be,

P* + Ry (p) p® +p2 +0p+l = 0pé +0p5 +0pH +p? +p? 4 0p +1
-

+0p1]

Let us write ihg four row polynomials obtained in part {a) to (d) together.

(e) To obtain generator matrix from row polynomials

t=1= 1% row polynomial = Pe+0p5 +0ps +0p? +p2 4p 40

t=2= 20d rou polynomial = 0pé 4 ps +0pt +0p° +0p2 4 p 41

Error Control Cading
— ¢

ie.,



Information Coding Techniques 3-104

t=3= 34 row polynomial = Op® +0p° +p4 +0p% +p2 +p+1
fe=d = 4" row polynomial = 0p® + OPS tQpf ok pd e p e pat
Now let us convert above polynomials into a matr-ix.
pt ps pt pd p? pl! po
Row1 "I o0 0 :1 1 0
C=Row2(0 1 0 0 0 1 1
Row3 |0 0 1 0 o1 1 1
Rowd4 0 0 0 1 o1 o 1
i) To obtain parity check matrix :

a) To olbtain P osulinalrix

X Pi‘rr}}km

Here k=4 and g=3= G = [Jr“q Py ﬂ]

We know that ;:[f

Comparing above equation with equation (3.3.73), -

[1 1 0]
N ‘0. 11 [
111 [
!_1 0 1]
by To obtain HT
We knose that,
I
il J’J".'r.-ll—!
! = | _____ !
L ! K ‘lr g

M1 OW
o1
f1 11
HT =110 1 ™
iI b 0
010
0 0 1]

23
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2 limportant conclusiorﬂand decoding table :
i oy e e 8 i i N .

% e dedved generator matrix to pet HT. Because rows ol HT ryprse
1 error patherns, The rowse of HT can be written direetly i DA e

ot broenies

Lothur dedondid i

i61yromials and identity matrix. This is illustrated in table 3.3.7. Ft s

Fstable. .
e — s ety o e 4 o e = w4 mr < ok e =
Aeamalnder Syndrome Rows of HT Error pattern (b}
| poiynomial
R(p) or
identity matrix B
plep 110 ie. 13 row of HT 1 0 0 0 ] 4] 0
P41 011 ie 2¢wowolHT "] 0 1 0 0 0 0 G
plep+ 111, ie. 39 rowol HT 0 0 1 0 0 0 0 F
ptapa 101, ie. 4 row of HT 0 0 0 1 1 i3 [
’ - 100, e 14 row of 13,3 0 4] 0 { I} u !
5 - 0910, ie 29wl 0 0 U G & i o
1
7 - 004 e Frowolly, |0 0 0 0 i - C
Table 3.3.7 Decoding table for G(p)=p*+ p7 -
Note Abave table shows that decoding table can be woitten daroctiy brom
remainder polynomials, _

iv) To obtain transmitted vectors
1) To decode Y =1101101

The received vector prrlynr'nm,a] will he,
Y(p)y = phaptovbpta ptapl+0p+]

Syndrome can be obtained by eyuation (3.3.62) as,
vem)
S(p) = rem =t |
Henee let us divide Y{pj by & G
i .
p?ap? +0p a1 Y P ap VUptaptapt vOpE
p& +,u-" 4_{];,1 n J,3

p? +0p+1 « Remainder
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Thus syndrome polynomial is, S(p)=p* +0p +1
S = 101

Error Controf Coding
Here S(p)=1, Hence S=00]

Ja From table 3.3.7,5 =001 corresponds to an error vector of,
i i . The syndrome of E=0000 007
Syndrome is nonzero. Hence received vector contains errors Y | o . o
5 =101 conmesponds to an error pattern of (see table 3.3.7), . - ect code e,
E=0001000 ‘ _ X - vor
Correct codevectar is, ) (0001100){9(000000])
X = Y®E
. = 00011Mm i
= (I]Oll[]l)@(OOOlDDO) .
= 1100101 Results : In thig example the codeve
2) To decode Y = 0101000 .

ctor are systematic, H
and check bits can be se

“Nce messgge vector (M)
Parated as shown below, R

Y(p) = p5+0pd+p3
Let us divide Y (p) by G(p) i.e.
pi+p m
prAap? e 0p+1 Wow +p3
PP+ pt +(Jp3—+p:
o pt+p? 4 p2
plapd+0p24p

|

Correct
code vecior, x

Message Check bits

p24p < Remainder
Here S(p) = p2 +p
S=110¢0
From table 3.3.7, S=110 corresponds to

E=1000000

< Correct codevector will be,

Table 3.3.8 - Results of Ex. 3.3.14

Maxinium likelihoad decision rule based decoding is discussed in next section,
X = YGE ,
) Ny Example 3.3.17 t A bmnry message  sequence 1007 is  coded
= (0101000)(9(100001)0)
= 1101000

Using a generntor
polynomial G (X)=23 4 x+1, Assuming a systematic cyelic codin,

5§ 15 wsed, det
i Lengllr of coded sequence.

dciciiiine -
3) To decode ¥ = 0001100 i} The transinitied codeword,

Y)Y = p?+p?
1
P +p? +0p 4-1)7];3 +p2

p3+p2+0p+1

iif) Assiming 3% by iy the,
the hardware b

recetved wo

rd is in error, workous the syn
lock diagram Jor the

drome and draw
syndrome generalor,

1 <« Remainder
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Solution 1 Given data
Generator polynomial, G(p)=p* +p +1
Muessage sequence A = 1001
i) To determine length of the coded sequence
The degree of the generator polynomial is g=23. Hence there are 3 check bits in
coded sequence. Length of message sequence is k = 4. Therefore total number of biis in
caed sequence will be,
no= ks q= Jae3=7
This is {7, 4) cyelic code.
{3i} To detarmine transmitted codeword

The cheek bit polynemial is given as,

] from equation (3.3.14)
1 L

s Ve ablan pd M)

The MESSALe SeqLuence [3;f Aot o== 100

M(p) =

( P+ 0p? +0p+1
since g=3, pT M) will be,
prMp pi(p? +0pt +0p +1)
po e 0ps +0pt 4 p3
a) To divide p7 M [p) by G(p)
The division of g9 M(p} by G(p) is shown below :
peap
) ;Jf‘ 4 (}11?.-;-”“0‘.;14 +pd

pha0ps +pd +p?

Al
ptOp? +ps

p" +0p3
4 0pt ap? - p

p? +p  Remainder

Thus the remainder is, CT(F}) =p?ap

(110)

{22 aformiatl

" have obtained the decading table n
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e
'ﬁ“r' ~¢) To obmfrr the codetword

The systbmatic torm of the codeword is given as,

X = (my my M omg 02 O £q)
1001110

This is the required transmitted codeword.

ﬁ] To determine syndrome for 4% hit in efror

have to obtain the decoding table. The table shows ewror
For the generator potynomial of G(p) =
£ 50100 Tt s table 3.3.6. From this f:- lir hserve

pattern and
Here we Qrt

corresponding syndrome vector. Croalowe

that for 4t bit in error (le. E=000100 (1), the syndrome vector i, 5 N
row of HT. :

Here note that there is no need to obtain complete decoding table pust Jur coe
syndrome.

Hotw to obtain particular sundrome duectly 7

In table 3.3.6 observe thal first four syndromes are apealby P o ol
p-submatrix (see cquation 3.3.70), Mow see equation 3.3.52 carcfully. Thoa toar e

of P-submatrix are part of generator matirx (G). Le,

From equation 3.4 52 G =

e el [ 14 194 U AR

Iy, Friakrix ©-submatrix

ohtgined By dividing ptt by Gy Hoeroor s Hence

Now wmimmz cinn b
a3,

divide p*=* by G(p). We have n1s 7. Henge p
1

pd +0pt+ p+1)~p

n3 +!1p 7 w1

Pt e Remafnsdcr

The remainder Ry (p) =p + 1 represeots syndrome.
ie. S=011

Note that this syndrome is same as that given in decoding table 3346,
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impbrtant note :

3-111 Error Controj Cuding
%Hhhmhh;:—— __'_"'“‘“'*-——-—-:__:.“—
[ ———
Unsolved Exwx‘

L A (15, 5) tinear Eylic code

Glp)= pw TP 4 pS e

- =4 ce f Ist f r Imes car s i 1 od., Thele
1 k - ] 'If:'n 1 O 5 ynd omes can . b 2 C‘b ta med b}’ abovc metn
ere u I t, d
are total » =7 Syndrome.';.

has a Sencrator Polynomiat
+pl tp+]

The remaining g=3 syndromes are simply rows of the 1; matrix, ie.,
|10 0] « indicates error in 5th bxt‘
f3a = [0 1 0] indicates error in 6% bit

0 0 1 ¢ Indicates error in 7th bjs

2 Draw the Mock diagrams of encodyr il sundrone

) Find the coide polynamial f
M) = pi s 2
i) Is ,\'{;J’) =p

calvuinior clrewiy for this Cindp,

e Message poliomiar
w1 fin systenaic form)

4 + pd +‘ur.+r”4
Hardware diagram for syndrome generator

+1a code pu.’y:m.-m}{! 7l noe, Jind the Syndrone of Xip).

The generator polynomial i,
- Gp) = P?+0p2ap+i
and G{p) = p34g,p2 +g1p+1
On comparing above two equations,

Ans, ij} Xlp) = pn P pn tpla by g
ki) Syndrome Sy = PP ps +p ?sz"-
2. Usmg e

I Syt je and nop-sys

bplep
Senerator Polynonial K

Cyelic cody worgs Jor the u
3. Sketchr e eticode

(3) =142 +ad e
1E55Age Dectors 1017 ang 1007,

T oard syidranie cafeyt,
and obiain the syndrome for e

tesantie

—

aler for the Seneralor i
received epue word 1001077
= d gl =1 . -
32 0 an.

1
—-—__—-—-—-_.____A——._._‘_

——

0l\inoming Sx) =1y, s |'I

With these values Fig. 3.3.4 can be redrawn as follows :

coding is done by Combining the
gy=1 9220
’ no conneclion

fixed numpe
in the fixed leng

input bits are Stored th shift register ang they

rof input bigs. The
help of mod-2 adde

e combined wit]

1 the
18 This operation IS equivalent to binary tenvolution apg hence jf
4 Is called Convolutional coding. This concept js illustrated With the [

Retaived I 2 Syndrome €Xample given below,

oot el © © oulput

Y

P oof simple

Fig. 3.41 shows a'convolutiona] encoder.
. . o ,
Fig. 3.3.13 Syndromae generator for (7, 4) cyclic code for G(p)=p3+p+

mauestions

This bit represent Previaus two succes
Current Message bjj,

Shive message
bits are stored in those twn fip-flops,
This bit js the part ¥ Those two bits {m,
of shift register

o) represen;
ﬁ*’R slate of gp;
Massagg n

1. What are eyclic codes 7 Why they are called sub class of block caffles.?

2. Explain how cyclic codes are Senerated from the Senerating poll ynamm.ls.

3. Explain how generator and parity check malrices are obtm‘ned‘ﬁ?r cyclic code.s.k I
Elrp!ﬁ:’n the encoding and decoding methods Jor cyclic codes gtving proper block diag

M register
bits input

Explain the Jollowing .
1) Golay codes
(it) Shortened codes -

(ifi)  Burst error. correcting codes
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The above convolutional encoder operates as follows.

Operation :

Whenever the message bit is shifted to position ‘m’, the new values of x; and ,
are generated depending upon m, my and my. ry and #ry store the previous twg
message bits. The current bit is present in m. Thus we can write,

(34

. (342)

Xy = m@Dpy &
@i Xy = néd o
The output switch first samples x; and then xy. The shift register then shifts
contents of ny to my and contents of m to . Next input bit is then taken and stored
in nm. Again x; and x» are generated .according to this new combination of
m, ny and my (equation (3.4.1) and equation (3.4.2})}. The output stvitch then samples
xp then x3. Thus the output bit stream for successive input bits will be,

X = xXaxxaxx; ... and so on ... (3.4.3)

Here note that for every input message bit two encoded output bits x; and vy are
transmitted. [In other words, for a single message bit, the encoded ¢ode word is two
bits ie. for this convolutional encoder,

Number of message bits, k = 1

Number of encoded output bits for one message bit, n = 2

34.1.1 Code Rate of Convolutional Encoder

The code rate of this encoder is,
1 .. (3.4.4)

In the encoder bf Fig. 3.4.1, cbserve that whenever a particular message bit enters
a shift register, it remains in the shift register for three shifts ie.,

oY - . . . e ‘
' First shift — Message bit is entered in position ‘m’".

Second shift — Message bit is shifted in position m;.

Third shift —» Message bit is shifted in position m;.
And at the fourth shift the message bit is discarded or simply lost by overv
We krew *hat x) and x; are combinations of m, my, ma. Sincz a single message but
remains i during first shift, in m during second shift and in m2 during third shift;

it influences output x; and xy for ‘three’ successive shifts.

Error Control Coding
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et
3442 Cunstraint Length {K)

The constrant length g o convolution code is defined as The number of ahiis o
whidh a single mesapge bit can nfloence the encoder output. It s exprossed i lerms
of mussage bits,

Far the encoder of Fig. 311 constraint length K = 3. bits. This is beciuse in this
enceder, a single message bit influences encoder output for three suecessive shifts, Al
the fourth shift, the message bit is lost and it has no effect on the output.

34.1.3 Dimension of the Code

The dimension of the code is eiven bv noand k. We know tha! ' ig the
message bils taken at a time by the encader. And n' is the encoded ot bite o
one message bits Hepce the dimension of the code is (n, k) And sueh encoder e

callecd (n, k) convolutional encoder. For example, the encoder of Fig, 3.1 has he

dimension of (2, 1),

Auether of

3.4.2 Time Domain Approach to Analysis of Convolutional Encoder

denote the impulse response ot

Lt
Lot the sequence {g),
i in Fie - ! (o am
which yenetates 2y ine Figo 340 Similarly, Let the sequence g, 2,7 o
of the adder which generates v i By 3001

denote the impulse response
impulse responses are also called generator sequences of the code.,

Let the incoming message sequence be {mg, ny, miz.....). The encoder penerates
“the two output sequenees v and vy These are obtained by convolving the penerator

sequences with the message sequence Hence the name convolutional code s pivin,

The sequence ¥y s piven as,

o N i
YEAE Q80 Mt 20,1, 2 . (3.4.5)
=0 J
Here wijo; = 0 for all 1>i. Similarly the sequence x; is given as,
A
. 1

Xy = ‘fhj - "1 poiath 1,2 LR Ry

=

Note : All additions in above eguations ar as per mod-2 addition cutes,
x and x; are maulliplexed by ihe

As shown in the Fie 347, the lwo cooguene

_-switch, Hence the uuiy o sequence is given as,
CTI T T TS TR S0 O £ B Qo
UV INC IO BN NGV } e

{2} L T et T B P T B B |

i}

SR I GRS S B AT S Y B 4]
Here LT SR R R L }

T8ome aulhors define constraimt lengih as numbsr af ouipul brs influenced |
massage bit i.e.

Constraln! length (k) = {n x M} bils
where 1= number of encoded autpul bulg b evaey input bit
and M = number of storage elements wioine in regpster

For tha encoder of Fig. 3.5.1 Constraint length © 2« 3= & bils.




* ke
i [
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2 () 2 (1 (0 )
and vy = X ={xU’ gt A } 5

iplexed in equation (3.4.7
Observe that bits from above two sequerces are multiplexed in equation ( )
The sequence {¥;} is the output of the convolutional encoder.

] slerni ing
sy Bmple 3.4.1 1 For tie convolutional encoder of Fig. 3.4.2 delermine the following
\\—%i}umsion of Hie code

i) Code rate
ii) Constraint length

;. = pac e :
w} Generaling sequences (impulse resporisis)

Information Coding Techniques
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Observe that the above encode

i} Dimension of the code,

Observe that encoder takes one message bit at a time,

two bits for every message bit. Hence n = 2. He

Dimension = n, k) =(2.1)
ii) Code rate
Code rate js given as,

- k
- r= K
”

[

" i) Constraint length
u) Oulput sequenice for message sequence of m = {1001 1)

4

{Nov./Dec.-2003, 8 Marks) i)

¥

i

—{+ f

Current [ ‘:
TIIL‘.\';SBQQ t

bit {m) \

Hence,

Here note that eve

Constraint lerigth K = 3 bits

5

.iv) Generating sequences

In Fig. 3.4.3 observe that x, ie.

nce,

ry message bit, affocts output bits for

> xf” is generated by adding
1 generating sequence &l is given as
- ~ o é i 158
Y] " B o
tessage | my 2 sequence F &= 111 1}
SEYLCNCE Flip-fiop1 Flip-lop 2 g . ]
: iﬁ Here giﬂ} I represents connection of bt m
{+ Y 3
* AU B : .
3 81" = 1 represents connection of bit m,
- ¥ W S " it o
Fig. 3.4.2 Convolutional encoder of Ex. 3.4.1 : gz"lf ! represents comjcff-l-(—)-n of bi
SRR age < e 2 o , i
In the Fig. 3.4.2 observe that input of flip-flop 1 is the current message - *2 Le.x;” s generated by additi
Solution ; n the hg. J.4. )

i : bit i . The output of
bit (m). The output of flip-flop 1 is the previous message bit 1.;». m]d:: e o cp;n o
flip-flop 2 is previous to previous message bit i.e. my. Hence above diag

& = 1oy
redrawn as shown in Fig. 3.4.3. . Here gf,z} = 1 represents co
Adder 1 3£2?. = 0 rep.esents tha
l ; - xgarx) “d ; 8 =1 represents conr
Mi?:j:ge“_‘" m | m, r:;z ‘):?Tomwt b - The above Sequences are also called imp1
X2 ‘ .

iTo

+
Adder 2

Fig. 3.4.3 Convolutional encoder of Fig. 3.4.1 redrawn alternafely

4

obtain output sequence

. The given message sequence is,

m = (g my m, My my):

o snt L

N0
spe 50 }{'\C‘H

ris exactly similar to that of Fig. 3.4.1.

Hence k

Error Control Coding

= L It generates

&

three successive shifts,
]

all the three bits, Hence

- (34.9)

ha uty =
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an st i SR ik
P . e’ i _\-. } ;
Ty ebiain otitput due to adder 1 013 I_ X = .\f" = {Lirion
Then from equation {(3.4.6) we can write, -8 - e
. i ” { 5 if‘a pbtain entprt due to adder 2
X = 8 mig 3.4_]] Nl . .
it Y ?p‘é: Similarly from equation (3.4.7),
3 A
: 2 N L A2
with i =0 above equation becomes, o= .\'f - L SN
L. =}
A1 NG
bt & yoimoy . _ .
! ;‘.>-.T; f And miop = 0 forall [>i
NE Wy "with 7 =0 in above equation we get, \
- erfp R 3 2 2
" ,rl"l} = gf} ‘"m” ={Ix1)=1 Here gf] )y and g =1
1x1 =1, Here 83’ =1 and nrg=1 - : = e ) ) .
M _ 0 M it Withi =1, NTE gy g
f=11n equation (34,119, X o= e m
1 4 E 1 ‘Q{} i SI 0 - ('[x[]} ® (1)« ])
= (Ix0@d(Ix1) =1 . B
Fere * that additions are 1-2 3 o . R 12
cre note that additions are mod type With i =2, _‘,{}2} - f\'f;””’—’ ) ‘\’:"m; @ ;,‘;"]m;,
= 2in equation (34.11), +0 Z o0, 8! 4 e
| P = g g g3 = (1x0) @ (0 @ (1)
= (IXG)(D(IXUJEB(le)zl - 1
T ia causti REL () ( 3 ofl o . o
Shin equation (34.11), Y3 =8y Ma®g Ty @ g e With 1 = 3, . S:{ s @ Ir L G)."»'r}“j}”]
= D@ (1x0) © (1x0) = (I1x1) ® (0% 0) @ (1 0)
= l ‘l = 1
Ce 4 eauatione (7 A0 n (m o . -
dnequation 3.411), ) = o0 @ ¢ Oy @ g0, With f = 4, A T R IRRTPRC L
\ = (Ix)@ A=) @ (Ix0) =0 = (1x1) G (0x 1) & (1 x0)
Vi equation (34.11), ,1{‘"1 = gﬂ}ms (-Bg,?”m., @g;_”rrm , = 1
= g?” "y (Dgé”m; since nts is not available With { =5, .1'?} = g:”m; @g{;'m;
= (Ix1) @ (Ax1) . = {Ox1) ®({1=x1)
= = 1 e
uation (3.4.11), xP= o, as g With = 6, v = gy
= ‘q{zum.i = 1x1
= 1x1 = 1
c= ] Thus the sequence x, is,
. o o= o 1111 Pcel
'.{Im, 1is, 4 X7 x; 1 .I ity

T T T T
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’ Information Goding : - : :
b) To obtain generating pelynomial for adder-2
P To obtain multiplexed sequence of xy and x, as per equation (3.4.8) _ e 3 The second generating sequence is given by equation (3.4.10). i =,
The two sequences x; and X, are multiplexed to get the final output Le. s gm = 1o 1}-
2 e T :
- v = x{1)x(2)x(1)x(2)x(‘-)x(2)xg1)3gZJIﬁl}xgz}xg‘)xgnxg)xg ) : _ :
; ! 070 L T2 2 Hence its polynomial can be obtained (equation 3.4.14) as follows :
, = {11,10,11,11010111) | §H(p) = 140xp+1xp?
1.4.3 Transform Domain Approach to Analysis of Convolutional Encoder = 1+p? ERRTS
In the previous section we observed that the convolution of ge:.u:'ratmg seqt;e{lcc e ¢).To obtain message polynomial
and message sequence takes place. These calculations can be simplified by ?ppdymbg . The message sequence is,
the transformations to the sequences. et the impulse responses be represented by N (10010 . )
[ cdlla = 1
solynomials. i.e., - ite B . - ion 3.4.15) '
POyt 'm( ) = g sgWppg®pay +?E»If} pM e (3.4.13) Hence its polynomial can be obtained (equation 3.4.15) as,
s p 8o & 2 mp) = 1+0xp+0xp? +1xp3 +1xpi
Similarly, e ) = 1 4+p3 4pt P
D) = o@ 4 oPpaePpre aglB M - (34.14) Py S
g9 = 8o FEUPHZ P HEM _ e | 9 To detenmine the output due to adder-1
Thus the polynomials can be written for other generating scquznti‘es. 'l;h: :1?; in Now xM{p) can be obtained from equation (3.4.16) i.c.
i . , . i slay of th N
"p'is unit delay operator in above equations. It represents the time delay ' W(p) = gW(p)-mip)
impulse response. oo = (Lap+p?)(l+p® +p4)
- Similarly we can write the polynomial for message polynomial ie., 1 ’ }“ ! 3 ’ 6**”
= ’ : = 1+p+pi+pd+p
mip) = mo +anp + Pt kg apts - (3415) ) prpep ) ;
{ Here L is the length of the message sequence. The convolution sums are converted { The above polynomial can also be written as,
e L. : () = 2 3y, Y w5 o
to polynomial multiplications in the transform domain. i.e., xH{(p} T+(Ixp)+(Axp2}+(1xpd}+(0xpi)4 (0% p3) + (1x p)
£ Thus the output sequence xlm is,
. xW(py = g(l)(p)-m{p) } (3.4.16) 2'- o
X (p) = 2 (p)-mip) i o= H1rooy
i .
. ¢ nces x and x@. %”' e} To determine the output due to adder-2
The above equations are the output polynomials of seque: ; 1 i i Similarly polynomial x?(p) can be obtained as
- . A bone are ition ruies. 3 : ‘
Note : All additions in above equations are as per mod 2 addition in g XD (p) = g@{p} mip)
hep Example 3.4.2 1 Repeat part (V) of example 3.4.1 using transform doma g (e pE)ep i
calculations (polynomial-nindiiplications). ;-’!* = T4p24p3 4pt 4pS 4 p6
Solution :  a) To obtain generating polynomial for adder-1: ik Thus the output sequence x,w is,

The first generating sequence is given by equation (3.4.9) i.c., x'(Z) = (1011111

W= 111 : . '
&; f} To determine the multiplexed output sequence

The multiplexed output sequence will be as follows :
%) = {11,10,11,11,01,01,11)

»
v

: Hence its polynomial can be obtained {equation 3.4.13) as: followé :
' gW(p) = 1+lxp+lxp?
= l+p+p? =
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Here note that very few calculations are involved in transform domain.
Lot us’consider the development of code froe for the MMESSAZE SegUrNee 1 "

3.4.4 Code Tree, Trellis and State Diagram for a Convolution Encoder

Now let’s study the operation of the convolutional encoder with the help of '-'Ot.le”*'
tree, trellis and state diagram. Consider again the convolutional efAcoder of Fig, 3.4.1°%

It is reproduced below for convenience. The first message input is m = |,

' *-'g:?fcﬁiows.
=l D 0O 0=

A=l 0=

Previous two successive message
bils are stored in those two flip-flops.
» Those two bils {my,my,} represent

stale of shift register

1704{0
Mmooy i
Before shift

This bit represent
current message bil,
This bitis the part ~
af shifl register

-

to the

Messana

bits ingut

The wvalues of o = 1) are fransmitted

Utpweaerd ariow Indicales

F S S P
that message bitis m ~ 0

Cutpul

~—Node or slale

output and register contents are shifted to right by one bit position as,

New state

With this input x; and x; will be caleulated as

RIEIERS
S ES i
rre fi'l! M-y
ToThs b et et
Aftor shift
shown

[ P | STER LT IR AR

or node when m -

Start | A
a
Fig. 3.4.4 Convolutional encoder with k =1 and n = 2
¥t Downwand arow indicalos
3441 States of the Encoder that mnessage bit is m = 1
In above figure the previous two successive message bits my and mry represents This adieates oulput |
. e . . ! Pudes oty g nose b R
state. The input message bit m affects the ‘state’ of the encoder as well as oufptts e o't 11 I
Y and xy during that state. Whenever new message bit is shifted to ‘nr, the contents Fla. 3.4.5 Code tree f de ‘2 to b
: . g. 3.4.5 Code tree from node 'a' to
of ny and . define new state. And outputs x; and x; are also changed according to =
new state my, m1a2' and message bit n. Let’s define these states as shown in Table 3.4.1. Thus the pew stale of encoder s omwmyg - 01 ar ¥

Let. the initial values of bits stored in ny and my be zero. That is mrymy =00

xxy =1L This shoawws that af encoder s o state “a” and i input is m = 1 then the nest

Hoand output Mransimo e pre

initially is i @ js W : : 9 =11, The firs Table 3.4.2 illustrales (s
initially and the encoder is in state a”. state is ¥ and outputs are xyx; =11 The first row of T: i
operation.
™ s State of encodar - The last column of this table shows the cade teee diagram agram
0 ] a starts at node or srare 0" The disgrany is reproduced as shownein
o AT — N o, et ‘." P . - .\I .
1 T b Ovserve that il m = 1w 50 cownward frons nnae o' Clhecwise o = L 3
- | upward from node 2’ ft can be verified that i m = 0 then next node (stete) 1s %
- ] . 4 . Sy e
1 0 ° Since m = 1 here we go downwnrds toward node b oand output {5 1T in this node (0
1 1 d state).

Table 3.4.1 States of the encoder of Fig. 3.4.4

2) When m=1 ie. second bl

Now let the second message bit be 1 The ¢ontents of shift regisior wil

will be as shown below,

it

o it

e

=

AR

;_;1
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J’O—J- 3 =19180=0 |
m iy fig . x; = 1D0=1 1 £y Eg%}— - ~ ] . o g%’.
These values of x;x3 =01 are then transmitted to g,g:-; g Y §§ E g ‘T ‘;E/:E gi,:o:
New state output and register contents are shifted to right by %’gg ofE a5 o 5’ & s T LT
. one bit. The next state formed is as shown. ' E ;E 2 - E 5‘%'3‘ 5
m m; m; 4—l Thus the new state of the encoder is mann =110r" ~§ §_§ .:'i} — ;‘ - § .
This bit is discarded ‘4 and the outputs transmitted are xix2 =01. Thus 0Pk 8 5 S| ¥ {§
the encoder goes from state ‘b’ to state “’ if input is — “ & e
‘1’ and transmitted output xx; =01. This operation is illustrated by Table 3.4.2 in :_%E 'g_»‘i‘ - I
second row. The last column of the table shows the code tree for those first and 2EST . o . bt
second input bits. : s . | - . _ -
3) When m = 0, i.e. 3¢ bit b 3 £
Similarly 3% row of the Table 3.4.2 (Refer table on next page) illustrated the z ° |9 - (_I
operation of encoder for 3¥ input message bit as m = 0. Now observe in the code tree s &% o - J
of last column. Since input bit is m = 0, the path of the tree is shown by upward 'g‘;g CE_. o od -
arrow towards node (or state) ‘c’. That is the next state is c’ {i.e. 10) and output is 2_53 © E““T’ &w( - ] ’ (f - ol _
1y =0l 4z : I - o
:’ Eg o« = - ] — | <f —
Complete code tree for convolutional encoder ° gg € E ~N| 7 E| @
Fig. 3.4.6 shows the code tree for this encoder. The code tree starts at node “a’. If :ng‘;’ *f - r o w U— o
input message bit is ‘1’ then path of the tree goes down towards node ‘b’ and ouipul. “EE = o L | 1
is 11. Otherwise if the input is m = 0 at node ‘a’, then path of the trce goes upward = ; :
towards node ‘a’ and output is 00. Similarly depending upon the input message bit, - & I |, I
the path of the tree goes upward or downward. The nodes are marked with their Syt |@ " ; - ‘|; -
stafes a, b, ¢ or d. On the path between two nodes the outputs are shown. We have ggg g z - o o
verified the part of this code tree for first three message bits as 110. .g 3 R ¢ o 9
If you carefully observe the code tree of Fig. 3.4.6, you will find that the branch © ,:" E“ "I_ 1 cﬂi 1
pattern begins to repeat after third bit. This is shown in figure. The repetition starts e |1[ =z
after 3rd bit, since particular message bit is stored in the shift registers of the encoder 3 o - ‘ "
for three shifts. If the length of the shift register is increased by one bit, then the f‘:‘ E : ® 1 - o
pattern of code tree will repeat after fourth message bit. (Please refer Fig. 3.4.6) i'_' ; o EN‘ o | 5 S gf o f 5 |,,k| B é"‘ - ] -
2 2 w = i
3.4.4.3 Code Trellis (Represents Steady State Transitions) "é g L £l o EE* el - J; }[ A J g
Code trellis is the more compact representation of the code tree. We know that in _E‘E g 8 . 2 L & g
the code tree there are four states {or nodes). Every state goes to some other state - 1 S N - T E] - U i = E‘ o I“c"
depending upon the input code. Trellis represents the single, an unique diagram for —
such transitions. Fig. 3.4.7 shows code trellis diagram. r éz z - - { _
: £is °
: & g - e~ , -
Table 3.4.2 Analysis of convolutional encoder of Fig. 3.4.4
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f'"_—/\‘—'\/‘—‘—/\‘ﬂ-—-/\-—\'
on_ .

Oulputs ) b
00 Lacy, T3 porticn:

of the code tree

Upward path
indicatas
inpuUt m=0

Dewnward
path
: indicates
o6 inpu! met
(S|
o
Fig. 3.4.6 Code tree for convolutional encoder of Fig. 3.4.5
Current slale Ouiput Next state
o [£4]
00=a S ———» ®n=00
e
1 01=b @ v 8 b =01
10=¢ ‘“?\ c=10
o b
M=d 3 e d=11

e s bl

. Fig. 3.4.7 Code trellis of convolutional encoder of Flg. 3.4.1
Phe nodues on the el denste four possible current states aad those on the right
. ' td transthion line represents input m = 0 and broken frne
cobimantsanpuat e 1o Alang with each transition line the output xx; is represented
during  that transilion. For example let the encoder be in current state of ‘a’. If input
m = (1, then next state will be ‘2’ with outputs xyx3 =11 Thus coc.Ic Ereﬂ"is is It:)he'.'

e TR RIT SRR h —

compact representation of cade tree.

T Ndicates vepetaMion « )Y

o
3.

<

L
oy
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If we combiine {iwe current apd
next slales, then we  oltain afate

diagram.

For example consider that the
10 ~encoder in state ‘a’. If input m = Q,
then next state is same te a Qe 00
with oulputs xxz =0 This is shown
¢ . by self laop at node “a” in the state
' . diagram. If input m = I, then stale
“_Flg. 3.4.8 State diagram for convolutional diagram shows that next state is 0
encoder of Fig. 2.4.1 ) I:iga ! SENOows 1at next state s

with outputs xjx; =11

15 q

Table 3.4.3 shows the comparison between code tree and treilis diagram ¢

graphic structures to generafe and decode convolutional code.

e _,.IE

Sr. Code tree Trellis diagram [

No. !

e

1 | Code tree indicates flow of tha codad signal Trellis diagram indicates transhons fiom current |

along the nodes of the free. o next slates. i

R et s e e i

2 Code trae s lengthy way of representing Cade trellis diagram i stoacr or compacd way ’
coding process. of represeanting coding process

3 | Decoding is very simple using code lree, Decoding 15 ittt complex using trellis dingram, ]

41 Code tree repeats after number of stages used | Trellis diagram repeats i pvery slals tn stety |

in the encoder. state, trellis diagram has only stage i

5 Code tree is cofmplex to implement in Trelfis dlagram is simnler tey mpfement a }

programming. i

ramming,
programming. - N e

Table 3.4.3 Comparisen between code tree and tréliis diagtam

1.4.5 Decoding Methods of Convolutional Codes

These methads are used for decoding of convolutional codes. Thev
Voorithm, sequential decoding and feedback decoding. Let's consider them in details

aree vitorh?

1‘“ SU]JSC(IIIC!'\I sections.

1451 Witerst Alnorithm Tor Dasoding of Convelutional Codes (Maximum Likeitheod Decoding)

Let’s. represent the received signal by Y. Convolutional  encodiny
continuously on input data. Hence there are no code vectors and blocks o such, Let’s
assume that: the transmission error probahility of symbols 1's and 0's is same. Lel’s
define an integer variable metric as follows.

o operates
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Metric : el at
Tt is the discrepancy between the received signal Y and the decoded sign:

parlicular node. This metric can be added over few nodes for a particular path,

Surviving Path : ‘

This is the path of the decoded signal with minimum metric.

In viterly decoding a ‘metric is assigned to each surviving path. (Metric of a
particular path is obtained by adding individual n*.u:tri'c on the f\odcs along that path).
¥ is decoded as the surviving path with smallest metric.

Consider the following example of viterki decoding. Let the signal being rcccive.d
is encoded by the encoder of Fig. 3.4.1. For this encoder we have obtained code trellis
in Fig. 3.4.7. Let the first six received bits be

Y = 11 01 11

a) Decoding of first message bit for ¥ = 11 .

Note that for single bit input the encoder transmits twobits (x1x2) out.puts.. These
outputs are received at the decoder and represented by Y. Thus Y given al?ove
represents the outputs for three successive message bits. Assume ”.mt the decoder is at
state n5. Now look at the code trellis diagram of Fig. 3.4.7 for this cn?od.er. It shcwrrs
that if the current state is ‘a’, then next state will be ‘a” or ‘b’. This is shown‘ in
Fig.3.4.9. Two branches are shown from ag. One branch is at next .node ay representing

decoded signal as 00 and other branch is at b; representing decoded signal as 11..

The branch from agh, to represents decoded output as 11 which is same as

Branchform=0
with output 00 Cumultive or

path discrepancy
@‘/ (metric) is two
® 3

ag 00
R (2}
11
Branch for m = 1 {0 Path metric is zero

with output 11
Discrepancy or metric

IS Zero

e b,

Fig. 3.4.9 Viterbi decoder results for first message bit

received signal at that node ie. 11. Thus there is no discrepancy between received

i "Metric’ of tha is zero. This metric is shown
signal and decoded signal. Hence ‘Metric” of that branch is zero. This metric 15 $

in brackels along that branch. The metric of branch from ag to a1 is two. The encoded
number near a node shows path metric reaching to the node.

Error Control Coding
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b) Decoding of second message bit for Y = 01

When the next part of bits ¥ =01

Y=0 . .
is received at nodes a, and by, then
@ 34 00 (O a from nodes a, and by, four posstble
'\"“'--...‘_‘_(” 1" e next  states  aa,bn,cx and o, are
. R possible. Fig 3.4.10 shows all  (hese
Qb ™ @
~— o ‘o ~® b, branches, their decoded outputs ansd
W o branch metrics corresponding to those
. \'~~QI T decoded  outputs.  The encircled
(OF <. - - e
) fmrflbl'r near . fn':g,l.{}z,\_; andd o
® dy indicate path metric. eterging from

ag. For example the path metric of
path ag,a;,a: is ‘three’. The path

Fig. 3.4.10 Viterbi decoder results for second metric of path aghyds is zero.

message bit

¢} Decoding of 3 message bit for Y = 11

Fig. 3.4.11 shows the trellis diagram for all the six bils of Y.

Fig. 3.4.11 shows the nodes with their path metrics on the right hand side at the
end of sixth bit of Y. Thus two paths are common to node ‘a". One path is ayaiaa;
with metric 5. The other path is agbycaay with metric 2. Similarly there are two paths
at other nodes also. According to viterbi decoding, only one path with lower metric
should be retained at-particular node. As shown in Fig. 3.4.11, the paths marked
with x (cross) are cancelled because they have higher metrics than other path coming

I to that particular node. These four

Y= 1 01 11

paths with lower metrics are stored in
the decoder and the decoding
continues to next received bits.

d)}  Further  explanation of witerli
decoding for 12 messaye bits

Fig. 3.4.12 shows the continuation
of Fig. 3.4.11 for a message 12 bits,
Observe that in this figure, received
bits Y are marked at the top of the
decoded value of output je. ¥ +E is
marked at the bottomn and decoded
message signal is also marked.

Fig. 3.4.11 Paths and their metrics for viterbi
decoding
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M""“‘"—mu

Y = 11 01

Fig. 3.4.12 Viterbi decoding

Only one path of particular node is kept which is having
there are two paths have
that a node *a;,"

lower metric. In case if
then any one of them . is continued, Observe
only one path arrives with metric two. This path is shown by a thiek
line. Since this path is lowest metrie it is the surviving path and hence Y is decoded
from this path. All the decoded values of output are taken from the outputs of this
path. Whenever this path is broken it shows message

message bit nt = 0 between two nodes,

same metric,

bit m=1 and if it is continuous,

This is the complete explanation of viterbi decoding. The
in viterbi decoding is called maximum likeliliood decoding.

method of decoding used

) Cappryiy?
e} Survivin ¢ paths

During decoding vou will find that a viterbi decoder has to store

paths for four nodcsl

four survivity

Surviving pathl‘s = (K-Dk .. (3.2.20)

Here K is.constraint length and k is number of message bits,
%

For the ericoder for Fig. 3.4.1 K=3 and k = 1

Surviving paths = 203-0x1 _4

Thus the viterbi decoder has to store four surviving paths alwavs. If the number of
message bits to be decoded are very large, then storage requiren.cii: s also large since
e lecoder has to store multiple (in present example four) paths. To avoid this
problem metric diversion effect is used. :

[} Metric Diversion Effect :

For the two surviving paths originating from the same node, the running metric of
less likely path tends to increase more rapidly than the metric of other path within

about 5 (k - 1) branches from the comimon node, This is called metric divergence effect.

Rk

£
o

; . v sy wth 15
s bic is more compared to the path at ds. Hence at node ds only the su Ir‘r’f‘ff pa ;“'

ic 5 ) ' e s Joendp e fresh paths are started from o
Shsated and the message bits are deended, The fresh | s

" 1) The decoding starts at ap. It follows the single path by taking the branch with

Error Control Coding
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LRk

. in 1 v oratt
amtple consider the two paths coming from node by in Fig. 3.4.10. One ot
o CL R P is less likely amd hence ifs

D‘E}-‘cﬂ at nz and othes path comes at 5. The path at as ? Y

i

hE)

; : s » t be
ke : age is reduced since complete path need no
'J“jmse of this, the memory storage is reduc p I

s i o
smallest metric. For example as shown in Fig. 3.4.13 (a), the path for first three
nodes is aglyd; since its metric is the lowest.

n o vi SIS o
F: iy 5 g i OL{(J. with name metes, N
If there are two or more branches [rrl. v the same n

? decoder sclects any one branch and continues decoding,.
3) From (2) above we know that if there are two branches from ;\m: ::m:[[-._-;;.{::tl:;
- equal metrivs, then any one is selected at rar}dom, If the se[ect_e Pl au..._” .
to be unlikely with rapidly increasing merit, t]'nrrn‘ doccmj(:?— L"l:':(“(:” m‘.‘.!,”'ﬂ‘![:
and goes back to that node, 1t then selects other path emerging o H‘".ms e
For c;cumPIc observe in the Fig. 3.4.13 (a) that two brunc'his‘ ]w‘:n“\’;’m. e
emerge from node oy, One path is t“fy!',uuﬂﬁ {or path. ‘nhll}r : ”:h_
‘3" at as. Therefore decoder drops this path and follows other path. N
4} The decision about dropping a path is based on thf CX-I;:‘:::;:U"T\'[;,:-I\‘,:L rnL;nmng}
metric at a given node. Running metric at a particular § 5 g ”,l )
RN WA
Running metric = fra
where | is the node at which metric is to be calculated. ‘
n is the number of encoded output bits for one message bit.
is the transmission error probability per bit.
and o s N

: athy whenever its runnimg
The sequential deceder abandans o path whenevor | runing o
AT should be above oo ot ™ node, Fig 3000

LR RE RN

* i T iy S Y

(jna Ay Here o s the | 1 ith jespect ta number of that node. The twa
. ; rarticular node with jespect

runningg metric at a

" } N ter, (Yoo
f’ ‘A ! o at a px‘lThllII{ll newter, L
dO“cd i 5 show h ™ il ()f thresho li A above priae . )
ll“e. b] ows the ran _7|. e -
ﬂla me[‘ric Qf Pﬂlh B exccelj.b lhe nll (‘!-hold at J” ] (‘)dL‘, AT ddeldf-)] s 1 d”d
t since

decoder starts from node ‘2’ again. Similarly path 'A’ is also abandoned.




I Codin
Information Coding Technigues 3-130 Eror Contro g

5) If the running metric of every path goes out of threshold limil? th{en}:‘he ;z;h]:;
of threshold 'A' is Increased and decoder tries back agam.. n mli;. 4.
{(b) the value of a =1/16, for encoder of Fig. 3.4.1 we know that n=2 .

calculate jna at 8% node.

Let's

{a)
o
-
‘=
o
=2
fra
by
S
T 3. 4 5 s 7 8 3 10 n w2

Fig. 3.4.13 Sequential decoding

. ' \ ill be,
At 8% node jna =8x2x1/16=1 The value of & =2 Therefore threshold wi

Threshold = frna +A =1+2=3 at 8% node. Similarly th‘c threshoFd allotl-;c:i n;?:i
can be calvulated. The computations involved in sequentfal c’iecodmg art:}'hebzut ,
viterbi decoding. But the back tracking in sequential. decoding is cc.)mpl‘ez. ;in apnd
error probability is more in case of sequential decodljng. Both the viterbi -ico S(ﬁware
sequential decoding methods can be implemented with the help of computer

efficiently.

EY |
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distance is equal to the minimum distance between the code vectors. Since minimum
distance is cqual to minimum weight of the code vector we can write,

Free distance (d;) = Minimum distance between code voctors

Minimum weight of the code vectors

I

ie. dy [w(X)]mi“ and X is non zero a2

Here [w(.\')]n_m is the minimum weight of code vector. For convalutional coding
free distance (d, ) represents the error control powcr,
Coriing Gain ;

Coding gain is used as a basis of comparison for different coding methods. To
achieve the same bit error rate the cod'ing gain is defined as,

Ey
i I {ed
[N“ ] Encode

= s (A2
Ep
—— | codyd
(%)
For convolutional coding the coding gain is given as,
M ra'f
. A = {3424
: 5 { )
i
: here 'r' is the code rate and
C; dy is the free distance,
2

4.6 Probability of Errors for Soft and Hard Decision Decoding

In this subsection_we Wil study the error rate performanice of the viterbi algorithm

“for the additive white gaussian noise channel with soft decision and hard decision
. decoding.

" 3.4.6.1 Probability of Error with Soft Decision Decoding

Let us consider that the all zero sequence is transmitted and we calculate e

;. probability of error for detector deciding in favour of another sequence. Let the coded

binary digits for the j% branch of - the. convolutional cacle be represented  as

EERETP

d Coding Gai m=12, ....n. The input to the viterbi decoder be the sequence, fi,, m =1, 2, ... n and
3.4.5.3 Free Distance and Coding Gain . i i ki Lo nput to ¢ .
i > i r detection * i, 1=L12 ... ere ry, is given as,

For the bluck and eyclic codes we have seen that the error correction 0 g . o o -

ini is between the code vectors. g Tim = NEc (2¢m =) +n, o £3.4.2%)

power depends upon the minimum distance be . . oot cddéuﬁ‘ | f | .
convolutional encoder does not divide the output encoded signal into dil. (::l’e-ﬁ to’rﬁ%; : Here cju, represent the transmitted bits, j indicates the /™ branch and m indicates
vector, but complete transmitted sequence can be comide;g@js a single code vec ‘{@&- ¥ m™ bit in that branch. £, is the transmitted signal energy for cach code bit and Moy s

ini i between';
Lot X orepresent the transmitted sequence. We know that mmunum_?hstan?er‘ e
the code vector is equal io minimura weight of the code vector. Therelore ;

i . .
% the additive noise.

The viterbi soft decision decoder calculates also branch moetrics by fallowing
. telation
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I 2 {1 s g
Heto= L."J;,,,(QC. -1 {34 i
' faer e ¢ v?s}*-?' 3
A

ol

gt

Hence i represents the 1" path and ugi is the metric of j® branels in /' paw, '[',i]é%b

viterbi decoder then obtains the path metrics as,
) a
A fr] = ' {'l)
& >, K

i=

"'.—. L a) .
= 2, 2 rn(2¢, =1
Jelms ’

Here i is the % pathy and B is the branches in that path.

.'E'Iw C'{"lﬂ\'(?[[l'.i(\.l‘.i?] code does not have a fixed length. Hence we will derive jis
performanee from the probability of error for the sequences that merge with the all
aveo sequence for the first Hime at a given node in the trellis.

Mhe probability of error when another path merges with all zero ];mth is equivilent
to probability that metric of this path exceeds the metric of all zere path for the first
Hme, Le., ‘

Pytd) = PCMU = Cpaiiny
= PICMM —Cpim

putting for CM! and CM® in above equation from equation (3.4.27) we get,

0o,
P - ,,{?_L $ el - - (3428

Jelm=tl

. H m o, . - . f

Here the difference EE.“]: —{:E”]; is equal to 1 at the bit positions which are In error
bueeause of incorrect path with respect to all zero path. Thus the above equation is the
pmba.ﬁi]it}' of such non zero bits at “d” positions in the incorrect path. Hence above

equation can be written in the simplified form as,

i
Pady = PLY r;’z[}} (3429
f= i

1

Fere {rf] are the 6T Or fwna - bits at ‘d’ positions, |#f} have gaussian distribution

Hence the above pmbnb[]it}' equation can be written as,

el e

Py(d) =
2{d) Q{\}’Nn

[
e
T

=2
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Thit equation gives probabilty of error in the pairwise comparisen of the two

£ E
2 and R,o= 2, the albove saeation can b

paths which differs m "d” bits. Stiwe vy -
ivg “h

Lowitten as,

Pd) = QW2viR ) . (34.31)

This is the probability of path of distance 'd” from the all zero path. Actually there
will be many such paths with different distances and they merge with all zero path at
given node B. The first event errar prohability can be obtained by summing the errer
pmb.tbilitit::: over all the possible path distances, Hence the upper bound o tiest cvent

.

errur probability will b,

L=

L e

> aalnd)

o= afy, ik, .

e (3432

Here ay is the number of paths of distance "d” from the all zero path which merge
with all zero path for the first time.

Flenee Hie above eapression s catled first event error probability, 1Tis Gt ovent
error pr‘:'rhn!!i]it) prm'idcr: the measure ot the pu:'formnnr_(.‘ af convolutinnal code, The
Fil orror p;'ob.ﬂwi]ir}’ s more useful performance measure. The bt error probubility

upper bounded by first event error probability.

3.45.2 Probability of Error witlt Hard Gecision Dacoding
The binary symmetric channel vses hiard decision deroding. Tlere lef us conserdoer
ihe performance of viterbt algorithm for hard decision decoding,.

celen e )

Consider that the all zero path is trapsmitted, and the path wiveh s
distance 'd’ from the-all zero path. With hard decision decoding, the probability o

incorrect path is selected is given as,

{, i . F.
Py = 3 r 1,.ln oyt . (3.4.33)
L +1} U\j
REL

k

Here p is the probability of error in the binery symmel.ic chanrol. The union
bound on the first event esfor prebability that all the possible paths merpe withe eif

zero path at a given node is,

ro< 3,

o= 'Ir.fm-'

l;'“‘_,_a‘,f} (3 '].?-""}

Here {ay) represents the number of paths corresponding to the set of distances .

" The bit error probability can be more useful than the first event error probability. The

union bound given by equation (3.4.34) is the upper bound on bit error probability.
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Comparison between hard decision decoding and soft decision decoding :

We studied hard decision decoding and soft decision decoding for block codes and

cony

olutional codes. Following table 3.4.4 lists the comparison of them.

—

a3 in
&0

Parameter

Hard decision decoding

Soft decision decoding

Prnciyle

The decoder operales on hard
decisions rmade by the

demodulator. This decoding is
calied hard decision decoding.

The demodulalor oulput is
quantized into mora than two
levels. Hence decoder operales
on sofl decisions made by
demodulator, It is called soft
decision decading.

Prelerred type of channel

Binary symmelric channel,

Gaussian channal.

Correct / incorrect decisions

The decisions can be labeled
as correct or incorrecl.

- incérreck

The decisions cannol be
direclly.labelod as correcl or

Probatility of eror

Symbol error probability can be
calculated directiy.

Likelihood of symbol types car
be expressed. Hence
conditional probabilities are
normally wrillen.

Complexity ol decoders

Irnplementation ol decoders is
simple.

implementation of decoders Is
complex.

Proigaed code

Block codes and convolutional
codes use hard decision

" decoding.

Convolutional codes use soft
decision decading.

——

sl Example 3.4.3 : The figure below depicts a rate 1/2, constraint length N =2
convolutional code encoder. Sketch the code tree for the same.

Table 2.4.4 Comparison

between hard decision decoding and soft dacision

decoding

Inpul
binary—1 S1 S2
sequence
Xy %2

Fig. 3.4.14 Convolutional encoder

&,

'L

R

TR O T b e o b
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Solution : "a) Déefine slates of encader
£ o

The constraint length of the given-convolutional encoder is K=2 . Its rate is —
: - 2

o means for single message bit inpul, two bits x; andx; are encoded at the output. "s;’

~represents the input message bit and s, stores the previous message bit. Since only
one previous message bit is stored, this encoder can have states depending upon this
stored mcssage bit. Let’s represent,

. sz = 0 state ‘a’
and sy =1 state ¥’
b} Qutputs of encoder . 2

Let’s assume that the contents of sy ands; are zero initially. From entoder of

Fig. 3.4.14 it is clear thai outputs xy and x; are given as, \

5
2 } .. (3.1.35)
53 D s,

Xy o=
Xz

1]

c) Prepare state diagram
Before drawing code tree, we will first prepare the state diagram Jor this encoder.
State diagram represents the compact version of code tree. Table 3.4.5 shows the
present and next states corresponding to different inputs of message signal. First row
of the table shows that if present state of encoder (which is defined by sa) is 'a" and if
- input 5y (i.e. m) = 0, then outputs x; x2 =00 and next state of the encoder will be ‘o
Second row of the table shows that in present state of encoder is 'a” and input is 7
then contents of s; s5 =10. Then the output x; x; =11 and next state of encoder is ‘I
Similarly other two rows represent how encoder operates if it's present state is 'l
(Please refer Table 3.4.5 on réxt page.)
'Based on the result of Table 3.4.5, we cah draw the state diagram as shown in
- Fig.3.4.15. . .

This line shows transilicn
] -from ‘a’ lo '6' when input
. ) ) massage bit is '1* and
wlputis 11

00

o1

Fig: 3.4.15 State diagram for the encoder of Fig. 3.4.14, Continuous

line represent input as ‘0’ and dotted line represents input as ‘1’
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,_.......,\_"!
Input Present Nex! state afler RE
message | Status of shifl register ctatn ?cmf:”l transmitiing Next state | %
bi! m 172 oufputs '
0 5 < ‘a
1 Sy a Xy =y SN SN Fi] '
. Xy 20 L B
B el B - o] o
L . .
i ie.
S 5 S; Sy
1 o ) a X, = . b
ik B ' x2 =1
Lo |
| g ie. T
| Sy 54 54 Sg
]
| V0
I’ |
_"-_-T] - - b x = b
Sy 5y 1 N
Xy =0
i — | 1 1
it i,
1% %2
| 1 . l
5 B — . - .
. x4 =0
s, s 1 N
A 1 S2 xp=1 1 ¥ I/-\
(}.n.,_‘._[_._ 1 4] 1
ie i.e. .
- 5 s
S S L
! K 0 ! : | o1

Tahle 3.4.5 Operation of encoder cf Flg. 3.4.14

As shown in state diagram, above encoder remains in state 'a’ if mpu{ is zero. In
the above diagram continuous lines are used when luput message bit is ‘0% and datted
tines are used when message bit is “1”. The arrow on the line shows the. transition

'L

B

b

'jht

3 [-ﬁ'orma{ibn Codlng Techniques 3.
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_,....-__

‘1}?*2! transition.
El} To obtaln code tree

ik

. h;{;? The code tree is derived from the state diagram is shown in gl 34T Obepree
b 4:¢3—5f}1.:t the branch pattern of the code tree repeats after hwo successive message
\.-13 because any message bit remains stored in the encoder register for two snccessive

7 sfuft*:

Fig. 3.4.1C Code tree

Ilh&- Example 3.4.4 :

drow the state diagram and hence trellts diogram, Determine outpul gt

Input = 4

00 ( b
RN ¥
T——-—-—-od
----- —a b
o0 bl La b
e B
PRE— - 3
_.._.Q\‘ Lg
—e
Inpuf = L P j{. ’
il
e a
—“—‘ﬁ—-—O 4]
Stat | b
a
L
| n o b
. e a
T
— H
11 el
Ll
1 o1 "
et 3
{ b—ab
- — 3]
W 1
]
10 b

for enceder of FFig, 3.4.14

For the convoivtional caeoder arrangement shoicis o

R

Lints.

Frrar Control Cuding

W pgwards et inh. The numbers marked on lire represent outputs o X durig that

Lhis

the data digits T 10 101 0 0. What are the dimensions of the codv {n. 1) and

constraint length 7 Use viterbi's
001 101 001 010.

u!grm}hm to decode the sequence, 100 110

i

11
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X

i )
m‘ Qulpul sequence

- Fig. 3.4.17 Encoder of Ex. 3.4.4 .

Solution : i} To obtain dimension of the code : Observe that one message bit is
taken at a time in the encoder of Fig. 3.4.17. Hence k = 1. There are three output bits
for every message bit. Hence n = 3. Therefore the dimension of the code is (n, k) = (3,

e

1). e
ii) Constraint length
Here note that every message bit affects three output bits. Hence,
Constraint length K = 3 bits,

iii) To obtain code trellis and state diagram
Let the states of the encoder be as given in Table 3.4,1. Fig. 3.4.18 shows the code
trellis of the given encoder.

my my
0 O0=a @=—

Cotted line
: indicates
o 1 inputm = 1
; 0
Solid line
indicales
inputm=0
1 1

Fig. 3.4.18 Code trellis of encoder of Fig. 3.4.17

The nodes in the code trellis can be combined to form state diagram as shown in
Fig. 3.4.10, '

Y

Error Control Coding

000

-

Fig. 3.4.19 state diagram of the encoder of Fig, 3.4.17

iv) To determine output sequence
a) Determing Sencrator polynomials |

The generating sequence can be written for .1'].(1‘1 from Fig. 3.4.17 as,

N .
8 = [1,00 since only m is connected,
Similarly generating sequence for .\“m will be,

&2 = 1,0 1

since n and Mz are connected.
- . . 3 .
And generating sequence for ‘Lr{ ? will be,

s =10

since mr and M oare connected,
Hence the corresponding generating polynomials can be written as,
8Mp). = 1
8% = 14 p2
§UGp) = 14p
b) Determine message polynomials
The given message sequence s,
m = fIID]OlOO!
Hence the message polynomial wilj be,
m(p) = T4p+pd +ps
<) Obtain output for g’m
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1y

The first sequence x;7 is given as,

X = g (p) . mlp)

= 1{(1+p+p>+p°)
= 1+p+p? +p°

Hence the corresponding sequence will be,

{1 = 1110101

d) Obtain ontput for gj.(z)

The second seauer {2} 45 eiven as
e second sequence x;™' is given as,

4 2
"_rg,.] 22 {p) - milp)

(Lap?) (Leprp® +p%)
= Lap+p?+p?
Hence the u_\'}i‘re.*;ponr:iing sequence will be,
W= 1100001

f
o) Obtain outpul for _:_\j:_{“)

43

The third sequence x7™ is given as,

= 2N (p)-nip)

s
= (1+p)-(Fep+p?+p5)
= 14p2 4+p3 +pt +pS +pt .
Hence the corrll"sponding sequence is,

_ = ro11111
i To nudtiplex thiree output sequences

The three sequences ,1'f”, xﬁm and x‘m are made equal in length ie. 8 bits. Hence

zeros are appenced in sequence, 1‘}” and x}z). These sequences are shown below :

2P - 11010100

= 11100001

i

xf_-“‘? = (10111110}

i TS
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¥
o i
Erfor Contriil Cadt,‘,;_!" ﬁ?:’§~. Y

Fig. 3.4.20 Viterbi deceding for example 3.4.4

e ot T T
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v) Viterbi algorithm to decode the given sequence
Fig. 3.4.20 (See Fig. on previous page) shows the diagram based on viterbi
decoding. It shows received sequence at the top, The decoded (Y + E) sequence and
decoded message sequence is shown at the bottom.
The dark line shows maximum likelihood path. It has the lowest running metric,
i.e. 3.-Other path are also shown for reference. At any point only four paths are
retained. The decoded message seqience is,
1101010 0
mep Example 3.4.5 : A convolutional encoder has single shift register with two stages three
modilo-2 adders and an oulput wmultiplexer. The foHowmg gencrulor sequences are
combined by the multiplexer to produce the cncoder output -

@ = (1L0,1); gr=(L,1,0; g5 = (1,1,1)

i) Draw block digram of the encoder.
i) For the message sequence (10011), determine encodid sequence.

if above hardware is enhanced by increasing number of stages in shift register and
nuniber of mod-2 adders respectively, what is the effect on

a) Generated ouput sequence

b) Periodicity of the codetree.

Solution : i) To obtain block diagram of the encoder

The shift register is two srage but every output g,,g; and g3 combines three
inputs. Fig. 3.4.21 shows the encoder.

Message
sequence
m

gy =m@m,
gz=m@m,
g3=m@my &m,

Culput

Fig. 3.4.21 Block diagram of the convolutional of Ex. 3.4.5

Error Control Coding
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ii) To obtain output sequence for m = {1 0 0 11}
a) Obtain" generalir polynomials
The polynomials of g;, 82 and g can be written as,
$1=(101) = 51{p)=1+p? o
82 r-_(]] 0) = g2(p)=1+p
&3 =(111) = 83(p)=1+p+p?
b) Obtain message polynomial

The message polynomial becomes, ,
m=(10011) = mp) =1+ p3 4 pi
¢} Oultput sequence due 1o 5 &

Output of sequence &1 is given as,
x(p)=si(pym(p) = (1 +p?) (1+p3 +pt)

T4+p2 4 p3 4 pt 4 ps +pt

(1011111)

d) Oulput sequence due to &2

I

Hence i X =

Similarly output of $2 is given as,
2(P)=82()m(p) = (14+p) (1+p3 + 1)
= 1Hp+p? 4pS

= (110101)

¢} Output sequence due-{og,

Hence

Output of g3 is given as,
xs(P)=ga(p)m(p) = (1 tp+p?) (] +p3 4 pt)
= 1+p+p? 4 p3 +pb
(1111001)
ﬂ Multiplexing the sequences due to 81,82 and g3

Hence x5

The multiplexer wij] multiplex the bits of T,X7 and x3 as foliows -
Outputsequence-f]]l 0111611171 100 110 101)

Note that X2 contains only & output digits. Hence its 7t output digit is assumed
Zero in above multiplexed sequence,

If hardware is enhanced by adding shift registers and adders
a) Effect on Sencrated onipuy sequcnce
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For each input message bit, three output bits are generated (See Fig. 3.4, 2}') rf,m

are three mod-2 adders in the encoder. Therefore three oufput bits are generatnd. IfiEE
5- i

mud-2 adders are increased, thew output bils for every message bit are increased. Therefopsis:

length of the coded sequence increases.
b} Effect on perfodic 1ty aof code trec

Periodicity  of  codetree
Fig. 3421, observe that three message bits are present at any time in shift rcp'mter

Heace code tree will be periodic after fourth message bit. If number of shges are

increased, then period of code tree also increases.

3.4.7 Transfer Function of the Convolutional Code

The state diagram of the

properties and error rate pecformance. Consider the state diagram shown in Fig 3.4.22, 3
We will use this state diagram to obtain the distance properties of the convolutional 3

oo, ot

Let us label the branches of this -

state diagram as DY,0',D%or D3,
Here the exponent of D represents
the number of 1s in the output
corresponding to that branch. Thus
the exponent of D is equivalent to
hamming distance of the output with
respect to all zero output Such
reorganized state diagrams with
labels D, D? and D? is shown in
Fig. 3.4.23.

-_. The self loop at node ‘a’ has all

Fig. 3.4.22 - The state diagram of rate 1, K =3 zero outpuls, ie. D% =1. Hence it is
3 not shown in Fig. 3.4.23. This self

loop with all zero output does not
contribute to the distance properties
" the code sequence relative to sl

zero code sequence. The node ‘a" is
split into two nodes. One node is
called 2" only and it is like input
node and the other node is e’ and it

ao

convolutional code

TN
oy v Yoy

Fig. 3.4.23 State diagram of Fig. 3.4,22 with
distance labels on the branches

diagram (See Fig.-3.4.23).

is related to number of stages in the shift register. Tn g

convolutional code gives information about distanee By

is like .output node of the state

formatlon Coding Techmques 3-145

bt et LA e s
.,d-l

II‘Own ay branch from b’ to ‘e’ (output node ‘e’, which is oblamed due to splitting ‘a7
{ovith label D? as shown ih Fig. 3.4.23.
f".;"IL":Emi!anV all other branches are labeled in Fig. 3.4.23. There are fite nodes in

Fig. 3.4.23. The four state equations can be written for state diagram of Fig. 3.4.23 ag
if follows
X =D3X, +DX,
Xy =DX + DXy ' .43
Xp=D2X, +D2X, B
X. =D2X, J

The state equation for the node is written from incident branches upan that v,
For example node ‘c” has incident branches from nodes ‘a” and b’. The transfer

function of the code is defined as,

iy . X .
P a
4 on solving the state equations in cquation (3.4.36) we can wrile above fransfur
X function as,
! . né
TD) = ——- -
1-2D-

= [+ 205 44010 v 5012 . (3.4.385}

The first term of the transfer function is 3% Tt means there s sinprde path ot

e’. As shown in Fig. 2.4.23 thng b i

Tmming distance d = 6 hetween node ‘a’ and °
are two pafle o!

acbo, The second term in above equation is 228 It means there
distance d = 8 between nodes a to e in Fig. 3.423. These two paths are accibe and
acbebe. Actually the path from node a to e means the path starting from node “a” and
comming back to node ‘a’ only. There is all zero output starting and ending at node

TaOTOs T

‘a’. The distances of the various paths obtained above are the hammiog Wit
Ly ' zero output path on node “a”’

it
(RRLN

Thus the distance properties of the convojulional code can be obtined from
transfer {unction, The minimum distance of the code is called as minimum free

distance. It is denoted by d .. In this example d . = 6.

tmmp'e thcrf‘ is one branch from "’ ro ‘L‘ wi!h output 111. chce D‘ is written aTong
fﬁs branch. Similarly the branch from ‘b" to “a” has output 011 in Fig. 3.4.22. This [4%4%
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3.4.8 Distance Properties of Binary Convolutional Codes
' e 1
Consider the convolutional code of consiraint length K and rate 7 Then the
minimum free distance for this code is giveﬁ by the standard result as,

21-1
3 —1(K+!—'])HJ

. {3.4.39)

dpee < nj'lzllnl.

Here the symbol Lx_j means larggst integer"lconfamed in x. Table 3.4.6 lists the

. . 1 : .
minimum free distance and its upper bound for rate 5 code at various constraint

lengths.
The genemtoré are also tabulated for these constraint lengths. This code is optimal
in the sense that it has largest possible dg,. for the given rate and the constraint

length. e
ﬁz::;:{:jlzt Genarators in octal Ttreo Upper dka"d on
5 7 5 5
4 15 17 6 6
5 23 5 i 8
6 53 75 8 8
7 133 171 10 10
8 247 an 10 11
9 561 753 12 12
10 1,167 1,545, 12 13
11 2,335 3,661 14 14
12 4,335 5723 18 15
13 10,533 17,661 16 16
14 21,675 27123 16 17

Table 3.4.6 Rate -%, maximum free _distance code

3.4.9 Advant'agé.s and Disadvag_gages' of Convolutional Codes

Convolutional codes can be designed to detect or correct the errors. Someé
convolutional codes available which are used to correct random errors and bursts.
Convolutional codes have some advantages over block codes.

Advantages :

1) The deccding delay is small in convolutionialcodes since they operate 0%

smaller blocks of data. .
2) The storage hardware required by convolutional decoder is less since the
sizes are smaller. '

=
)
".-.;'_«‘.,.-l»:gd

‘block

TR :-—-rn_‘{ah,-p‘.-.. ——
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3) Synchronization problem does not affect the performance of convolutional
codes. ’
Disadvantages :
1) Convolutional codes are difficult 1o analyze since their analysis is complex,
2) Convolutional codes are not developed much as compared to block cosen,
M=y Exampie 3.46 1+ A rale 1/3 convolition encoder has: generating vectors as ¢ = (1o
g2 =(111) and g3 =(101). | ‘ '
. i} Skelch the encoder coitfiguration. .
i) Draw the codetree, siate diagram and trellis diagram.
i) If input message sequence is 10110, determine the otfpul scquence of e‘}u' enconder,
Solution :  To determine dimension of the code - -

This is rate T,’I’f code. We know that

k1
rate = Pk therefore k=1and n=3
i) To sketch encoder configuration :

Herc. k=1 and n=3 This means each message bit generates three output bils
There will be three stage shift register. It will contain wiy and nes.

First output x; will be generated due to £1=(100)
Since g, =(100), x| =m.

Second output x, twll be generated due to g =(111)
Since g2 =(111), x3 =m® iy @ my

Third output x3 will be generated due to g3 ={101)
Sinc? £3=(101), x3=m® m,.

Fig. 3.4.24 shows the diagram of encoder based on above discussion.

Dutput
L!.‘(]UQH{_‘_[}

Fig. 3.4.24 Encoder of Ex. 3.4.6
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ii) To draw code tree, state diagram and trellis diagram -
a) To obtain trellis diagram
The two bits m, myoin the shift register will indicate the stale of the vrcoder, o

these states be defined as follows :

Mmynn = 00 state 'a'
Mpmnc-= 071 state b
Mymy o= LD state 't
Mz pty = 11 state 'd’

Table 3.4.7 lists the state transition calculations,

Current state | input Qutputs Next state
my 1y '
m Xy =1 mym .
Xz =m @ myDm,
Xy=mdmy —°
¢ r 0 0 8] 00 ie a
1 | 1 1 1 01,ie b
' 0 ’ 0 1 0 10 le.c
: | 1 i 1 Q 1 11, e d
i 0 0 i 1 60, iea
i 1 1 0 ¢] 01 le. b
]
f 0 0 0 1 10 e c
1 i i 0 11, 0e d

Table 3.4.7 State transition calculations,
How next stage is written ? :

Coi."l“sid(-:r the fo!]owing diagram.

‘Status before shfft'

L F‘[__

——— Discardeq

S e
These two These two
bits represent bits represent

slate after

stete (my m,) shifl. i.e m
- L2, I'T!T

Fig. 3.4.25 Present and next states
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T

An shinen in alowe fipre, current skate s My When the bils aee shifted, then
nest stite becomes iy o, Table 347 shows current and next states according to this
concept,

A treflis diagram s shown in Pig. 3.4.26 based on table 3.4.7.

000

S - B a=00
“"‘“‘--__ -,

3az00 &

——

d=11 @<= ..

Dolled line indicates input m =4
Solid line indicates inputm=0

Fig. 3.4.26 Trellis diagram for encoder of Fig. 3.4.24

b To obtain state diggram

' awe combine the modes in trellis diagram, then we wal! Lot state e g

shown below.,

l b
Q.
NS
nyen 01
e K \'\‘
R— 7 [ T s
000 \t( 16 J"’”U Ll fue
AN ,‘ AR
\ ‘
]
(TN / 001
R
w2 ,“/

Fig. 3.4.2, State diagiurn of encoder of Fig. 3.4.24

) To obtaitt code iree

Code tree ean be developed with the help of state diagram. Following procedure

should be performed : '
1 Begin with node any node {nonmnativ 4

2. Draw its next stales for m o= 4 and 1
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| r . Similarly generating p?lynomial for x,.(z) can be written as,

3. For every state determine next slates form=20 a‘nd 1
4. Repeat step 3 till code tree starts repealing,
Assumption : Upward movement in code tree indicates m=0.
Downward, movement indicates v =1
Based on above procedure, the code tree is developed as shown in Fig. 3.4.28.
000

a
ooo_[,
RATS
000 |
010
L b
11 101
00| d
Q11 . .
010 a
100
m=0 b ]
" - 001
m .
L d
110
101 d
' a 000 .
o [~
111 b
010 |, -
m=1 010 c
100 191 o4
b 011
111 a
00t [
100,
d
101 00y,
- d
110 110 d

Fig. 3.4.28 Code tree of encoder of Fig. 3.4.24

In the above figure, observe that code tree repeats after third stage. This is because G

each input bit affects upto three output bits of every mod-2 adder.

ili) To obtain output sequence for m = 10110
a}l To determine qeacrator polynomials :

The generator polynomial can be written for :cr.( ) as,

1
W = p0g

gU(py = 1+0p+0p?

VIR I O T A e, T o o e S R

g™ = (1)

() =1+p+p? ' =
And generating polynomial for 1".(3) will be, ..
g = (o
§3)(p) = 140p+p? : =

(b} To determnine the message polynomial
The message sequence is given as,
m= 10110

m(p) = 1+0Gp+p? +p3 +0p* =
¢) To obiain output sequence for g}l)
The sequence xfl} is given as,
3 = g () m(p)
1(1+p? +p3)

—= T+p? +p3

Hence the corresponding sequence is,
(= {1011}
d) To obiain output sequence for g',(z)
The sequeﬁce x".m can be obtained as,
2B = g () mip)
= (1+p+p2)(1+p? +p?)
= 1+p2+pd +p+pd+pd+pl +pi 4 ps

= 1+p+0p2 +0p3 +0pt +p5

‘ g(lJ(p) =1+p+pt

| Oyt

4
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Hence the corresponding sequence s,

# = 10001 o

vl To obtain output sequence for gl.(a) _-_},._ -
¥ .

4 13 L i

The sequence ,tf""' can be obtained as, : !

- m—— b - ‘- e e~ . . e 8 . et I TR — -
rf ) = 5,’,-( )(F’) m(p) o 1 ‘Encoder com" guratlon o £ oo

. Ve, A4

_,,' The generator sequenm gwen in thu‘ ox-lmple are similar to those ip

(14-;,-2)(1+p2.,.p3) s
,(prr:vious example) Only: 32 and g3 are.exchanged. Hence encoder will be same as

14p? 4 pd 4p? 4pt 4 ps
= 1+0p2 +p® 4pt 4 pSs
Hence the corresponding output sequence is,

_t,:{i‘_] = 10011 ;} ——

L multiplex Hiree o it sequences
The hree o s it ) 1 (3] . ; . i bi
che three sequences 1, < and X"/ are made in equal length, i.e. 6 bits, Hence

#eros are appended to _1':(']. These sequences are as follows :
A0 = 101100

W= 10000

o
Xy )E Xy
e Chpl| SEOUENCE

Fig. 3.4.29 Encoder of ex. 3.4.7

X s roor

Bits from the above three sequences are multiplexed to give the output sequence.

In-above figure observe that, _
g = (100), hence xy=m
g2 = (101), hence x3 =m® my
g3 = {111), hence x3 =m@ ny Oy

o= {111 010 100 101 001 011}
This is an ou L-[>'1r1t sequence of the encoder.

iz o Cxample 3.4.7 1 A rafe 1/3 convolutional coder with constraint length of °3° uses the -

yenprating veclors
2. Logle table :

$1=(100) g =(101) and g (111) .. | Table 3.4.8 shows the state transition calculations, The slates are dedved as tollows ¢
1) Sketeh encoder configuration and prepare the legic table. B . .. ' manyg = 00 state ‘o' -

i) Drawe the state diagramy oot o0 i manmy = 01 state

11 Determtine Hie A pe distance of the coder. . mamy = 10 state ’c’

mym = 11 state 'd’

b

Fennty _etews .
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e e
sr. |Curvent state | lnput Qutputs Next state
Ho. Mg My " u=m g m
X, = m@ g
Xy =MD My & o
— e ——]
1 a=00 h 0 0 0 0 00,ie.a
1 1 1 1 01, Le. b
E— ]
1 10, ie.¢
=01 0 0 0 ,
‘ ’ 1 0 i1, ie.d
3 c=193 0 4] 1 1 00 ie a
1 1 0 .0 01, le b
e —
-
0 10, le. ¢
=11 o 0 1 X
) ‘ 11, la.d

L 1 1 0 1

i > ig. 3.4.20~
Table 3.4.8 Logic table of encoder of f“lg‘______.,__ )
In above iable note that current state is written as m n. er_ien s}‘uft t;kes (f)fla:,
then mo is discarded. m is shifted in place of m, and rn 15 shifted in place 1
" ate is represented by m m. This is illustated in Fig. 3.4.25.

Hence next st

ii) State diagram :

i WS tate
With the help of table 3.4.8 state diagrain can be drawn. Fig. 3.4.30 shows the sta

diagram.

0od

of Fig. 3.4.29

Fig. 3.4.30 State diagram of encoder

i) To determine the dsoe Of the coder
The distance d e can be obtained through following steps :

a) Spiit the stute diagram with input note as 000 output.

b) Write slate equations for all nodes.

¢} Determine transfer function. ‘

.ﬂq‘j{-'!

1}

R,

B AT RO AT W TR R e e

ik
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d) Lowest order of transfer function is d free
a) To split the state diagran into signal flow graph
In the state diagram of Fig. 3.4.30, node 'a’ generales 000 output when it retums

back to itself. Hence we will split the node a into two nodes a : input node and
e : output node. The signal flow graph is then prepared as shown in Fig. 3.4.31

Fig. 3.4.31 Signal flow graph of Fig. 3.4.30 (Node a is split to "a’ and ‘e')
The outputs are marked as D,D?,D? in above figure. For example the output from
.'a" to b is 111. It is marked as D3. The output from b’ to ‘¢ is 001. It 15 marked as D
Rule for writing output in terms of D,D? and D3

We have considered the reference node with output 000. From 'a' to 'b', the output
is 111. This output differs with 000 in 3 positions, Hence D? is written on branch from
‘a’ to 'b". This rule is repeated for all outputs. This is explained in sec. 3.4.7 also.

b} To write the sfafe'cqurfans Sor all nodes

3
X, =D X, + DX,

f L_.This is the output

This is lha output from node '¢' to b’
from node 'a’ to ‘b’

- (3.4.40)

These equations can be written on the same lines as equation 3.4.36. Consider node
b". It's equalion becomes, .

Thus in above equation, the outputs due to branches fncident on " are considered.

Similarly at node '¢’ branches from b’ and 'd' are incident. Hence its equation
becomes,

Xe = DXy + DXy .. (3.4.41)
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Similarly at node 'd’, one branch is incident from itself and other is incident from

‘b oLe.,
Xe = DX, +D7 X,
At node ‘e only one branch is incident from ¢ ie.,
X, = D2 X,

¢) To determine transfer Sunction

To determine transfer function, we have to solve the state equ
above. Eliminating X;, from equation (3.4.40) and (3.4.41) we get,

(1—132))('( -DXy = DX,

!'_-I]iminafin_g Xy from equation (3.4.31) and equation (3.4.33) we geé,_
-DX. +Xy = 0

Eliminating X; from above equation and equation (3.3.34) we get,

(_1—2{.)2)Xf = DX,
L]
x, = _2° X,
1-2D2

Putting this value of X, in equation 3.4.33,

Ke = D? 2 __x,
—-202

Xe Do

Xo 122D

Transfer function of the code is given as,

Xe

(D) - &

d) To determine lowest order of ‘D" in T (D)

Let us determine the polynomial of T(D). te.,

it

ations obtained "'-;z_,_n

I’;q_r'w'.::i‘. Rt

3-157, _Error Control Codiriy
Db 4 2D8 4+ 4110 4 gD©2 ' T
1-202 o T T A
LRI p L
T o
208 ~ 4P
T apw
4 DII‘I — SDIZ
SDIZ
8[)12 —IGD"
I_]GDH’ ceeo atrtd 50 t;ﬂ
Thus,
T({D) = I—_-%%_? =D¢ 42D 4 4DW0 8D 4

Above equation shows that first term s De,

This means, there is single path of
distatrce 6" between noile *a” and o',

This path is abee In Fig. 34.31. Second term in

- T(D) is 208, This means there are bwo paths of distance 8 and so on.

Free distance (0. ) :
The free distance is given by iowest order of the term in T'(D). Here il is 6. Hence,
"ffm' = 6
d o Cart be oblained by inspection of signal flow graph
Here we derived T(H), then determine A pee. We know that e 15 the mitiimmm
distance path between nodes 3 and ‘e, By looking at Fig. 3.4.31 we can say that the
minimum distance path,_ is a-b-c-e. Along this path the distances are D31 and D2,
They correspond to distances of 3, 1 ans 2 respectively. Hence the distance between a*
and 'e’ will be 3414+ 2= 6, Other paths will have definitely more distances.
Hence,
dpee = 6
I Example 3.4.8 ;  Determine the state diagram for 'the comvolutional encodir shown in

Fig. 3.4.32. Draw the trellis diagram through the first set of stendy siafe fransitiom: Co
the sccond irellis diagram, show the termination of trellis to all zero state.

W-WM-—-‘—W‘-W e
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L Ou[pul

i Fig. 3.4.32 Convolutional encoder of Ex. 3.4.8
Solution : (i) To determine dimension of the code :
For every message bit (k-:l), two output bits (7 =2) are generated. Hence this is

rate % code. Since there are three stages in the shift register, -every message bit will

affect output for three successive shifts, Hence constraint length, K =3. Thus,
k=1 »n=2 and K=3
ii) To obtain the state diagram :

First, let us define the states of the encoder.
5352 = 00, statea'

5352 = 01, state'd’
5382 = 10, state '

$3s2 = 11, state'd’
A fable is prepared that lists state ftransitions, message input and outputs. The
table is as follows :

Sr. | Current state Input Outputs Next state
No. 5157 _
4 =50s50s

5 =50 s . 525

1 a=00 o o o’ 00, e a
1 i 1 01,ie.b N

2 b=01 0 1 ¢ 10,ie ¢

1 0 1 11, e d
3 c=10 0 1 1 00 ke a

1 0 0 01, ie. b
4 d=11 O 0 1 =10, Le. ¢

| 1 1 0 11, ie.'d J
Table 3.4.9 ; State transition table,

. With state g = 00.

Information Coding Techniques 3-159 B
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Based on ibove t_.j?‘]f:, the state diagram can be prepared casily, It is shown below

in Fig. 3.4.33.

\
|

Fig. 3.4.33 State diagram of Convolutional encoder of Fig. 3.4,32

i) To obtain trellis diagram for steady state -

From table 3.4.9, the code trellis diagram can be
diagram. 1t is shown below,

Prepared. It jg steady  state

. Fig. 3.4.34 Code trellis diagram for steady state
Iv) Termination of trellis to all zero state :

3

Fig. 3.4.35 shows the treljis diagram for first four received set of symbols, It begins
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Fig. 3.4.35 Code treliis showing termination toﬂ_zero state

There is a path g
path is gy —Iy —cq -

Third path is, a; -,
the shortest paths that terminate to all zero state. It shows that afler rece,

message bits, the trellis can ferminate to all zere state.

mmb Example 3.4.9 -

detection is possibie with correction by application of viterbi algorithm.
|II )
lnput —

e Gttt

Fig. 3.4.36 Convolutional encoder of.Fx. :3_.,4.9

1~y =3 —ay —as which passes through all zero states. Second
7. This path has a metric of 5 and it terminates on state ag.

=3 ~cy ~as with metric 6. it terminates on state 7s. These are
pion of 4

An encoder shown in Fig, 3.4.36 gencrates an all zero sequence

whiclt is sent over a binary symmetric channel. The received sequence 0100100.... There
are two errors in this sequence (at 2 apd 5™ position). Show that this doubfe crror

fafarmation Coding Teetiques 3161 Eeror Conteo? Coding

Sofutlon : i} Ta prepare code trejtis -

First we will prepare the code trellis diagtam. Let the states of the encoder b

- defined as follows :

S8 o= X, slate 'y’
S5 = 01, statp By
s25 = 10, state ¢’
s25r = 11, state 'd"

A table is prepared that shows the state transitions, message input and outging
This table is as follows - o

Oitpurts Hext stale

Xy = 540 54D %,

Xgm S 8, F18
0 0 00, ie a
1 1 01 e b
1 o O e ¢
n ] 11, ie d
! 1 00, ie a
0 ¢ 01, ie b
4] 1 10 ie ¢
1 0 11 e d

Tahla 3;7; SIa;eLt:;:;a-i-lhh_m table for cr::nder of f'ir.;.“&;%.’.‘tf'u
Observe that above table s similar to table 3.4.9 in previous example
because the convolutional encoder of Fig, 1436 and Fig. 3.4.32 are also simitn Hlote
that the flip-flop for input is not shown in Fig. 34.36. But it doosvol affecr 1.
operation of the encoder. Hence code trellis diagram is similar to that of Fig, 5454 ji

is shown below :

Thiw s

Curromt - Next
stite stale
a &"_:':—- e T me—————— & 0
1
.
—
Zte

m S
O O e e e e _2S > d

Fig. 3.4.37 Code treliis for encoder of Fig. 3.4.36
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. A
3 ble error detection : - N K . . e
il} To prove dou trellis diagram is shown-for multiple adder

. . - ﬁg’uﬂ;’ the ‘.
3ased upon code trellis of above . : ic,are marked along .
. Itfbﬁ[h:lzliagrmn begins from node &;. The outputs and m’e'mcli:rehz abose ﬁg“rﬁ
51“?’1 nch. The cumulative maltric are also marked near every nede.
each bra .

observe that the path, ' . ._
45 —a3 —a4 —as = metri¢ (2) is maximum likelyhood pathl. Ilc'I'iuls1 path :;:
ﬂ - ” 3 B . y - - = -
I weslt xnitric, compared to all other paths. Hence it is maximum : ; 3 aloodnd 55 o
(()J tput due to this path is 00 00 00 00... This shows that two errors a
utpu |

positions are corrected by viterbi algorithm.

Al Emgﬁ
'
i Bl

il

gi-hgg
{3
et

7 e
i il :

= By =by=dy—
o]

Fig. 3.4.38 Viterbi algorithm for detection of all zero sequence

. te
s . . . th of 3 and raif,
- Example 3.4.10 1 For the convolutional encoder with censtraint leng f Ibﬂ .

. s i . Is
12 as shown in Fig. 3.4.39, draw the stale diagram and trellis diagram

] 1 | - ; 4] I ]UUOO "'I " -
sencruted code systematic 7 By using. vilerbi algorithum, decode sequence 01000 .

B S S Y P

| |- :
|J'.IPIJt 1 FF']J y FF2 —= Output

Flip-flopr Flip-flop 7

- mod-2
Y adder

- + -
Path 2 y

Fig. 3.4.39 Convolutional encoder of Ex. 3.4.10

Solution : (i) To determine dimensions of the code :
rate = -{C--:—;— Hence k=1 and n=2 For every message bit, there are two bils
n
encoded at the output.

Constraint length K = 3. Hence output is influenced by three shifts in the encader.

ii) To obtain state diagram and trellis diagram :

Let us redraw the diagram of encoder as shown below. The state of the encoder is
fepresented by m; my. Input is 'm’. Carefully observe that, above figure is similar 10
convolutional encoder of Fig. 3.4.4. In above figure two flip flops hold previous two
inputs (i.e. ny my).-Thifd flip-flop is not shown, but input ‘m' is used directly. In
Fig.3.440, there are three stages in shift register which contain i, nyoand  nes
Functionally bothi the encoders are same,

y f_l

i
-n12 { o— Oulput

.

Fig. 3.4.40 Convolutional encoder of Fig. 3.4.39

Hence code trellis and state diagram of this encoder will be similar to those given

-in Fig. 3.4.7 and Fig. 3.4.8. They are given below
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wmsspemr incficAtes m =0

w
© b
o
Fig. 3.4.42 Viterbi decoding
dath 120, —fty —fy g —ds — g with metric 2
Path 2 .y =2 —atz ~by =<5 =Dy with metric 3
rath 3 1y —bg —dg =4 —ls —cq with metric 3
Path 4 1y =ly =d3 —€q ~bs —dy with metric 3
{b) State diagram . . . . . ;
’ Out of these four paths, first path has lowest metric. hence it must be considered
: for decoding the output sequence.
\ .
Fig. 3.4.41 Salh 1 ¢ sty ~fig =g — s —as — g is shown thick in Fig. 34 42.

For path "1’ the output i3,

Qutput : 00 00 o0 00 00 00
2l encoder showm in Fig. 3443, shetch Hhe stufe

For a convalutiona

ii) Whethier the generated code systematic ?
For the output code to be systematic, the message bit and check bits must be
identified. But this is ible i i tence
er ut this is not possible in the output sequence of given encodcr,ﬁHencc me> Example 3.4.11 :
dingram and retlis dingran. Determine the output data seguence for ti
iii) To decode 010000000 ... _‘ spquenie of 10110

geonerated code is not systematic.

A trellis diagram is shown in Fig. 3.4.42. In this figure observe that only survivor 1
paths are shown dark. Running metrics are marked near every node. The path giving !
lower metric is retained at particular node. Thus at the nodes a;,b;,c;,d; only four inptﬂ_____‘-,-,' i
paths are retained. These paths are evaluated at every stage of decoding. At the end, data e ,
LSV
1
ety Xg é-—— ----- cee (hetiatl BE R

four survivor paths are written along with their metrics.-They are : !
. ..,.._._.;.)._.*(:).__.__
| 1

Please refer Fig. 3.4.42 on next page. ' . ' T
' ) N [ M___._{:.}—_"__]] h

Fig. 3.4.43 Convolutional encoder of Ex, 3.4.11
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Solution : i) To obtain dimensions of the code ‘ ' k. b) To obtain trellis diagram
In above figure observe that three bits are gengrated. for every message bit. Hence ; Fig. 3.4.44 shows the trellis diagram based on above table. It indicates the
k=1 and n=3. This is rate 1/3 encoder. There are three stages in the shift register, . transitions between current state and next states.
Hence constraint length is K =3. i .
. . P : ’ t 2xt 512
ii} To prepare state diagram and frellis diagram Current states 000 ?ul tates
a) To prepare state transition table -
Let the states of the encoder be defined as follows : I .
mz . = 00, ie. state'a’ ey
N mymm = 01, ie. state b’
4
mzmy~= 10, Le. state 'c'
mym = 11, i.e. state'd' v |
The outputs of the encoder can be represented as, e .
n = m L
Tz = m®my ; Fig. 3.4.44 Trellis diagram for the convolutional encoder of Fig. 3.4.42
X3 = x; @Omy :‘
"" - *
= [m&my J®m  Puttin g for x; E c) To oblain state diagram
= m®m O®m, f’ State diagram can be oblained by combining the current and next states in above
Table 3.4.11 shows the transitions between various states along with i.nputs, and ; figure. The state diagram is shown below :
litputs. . . ;.
. X - ii;
Sr. | Current state | Input Outputs Next state é,
No. iTig Yy . : g P
m Xy=m © mmm »
Xa=m®m, A
Xy=mDmdm, -
1 a=00 ] 0 0 0 /1 00 ie a
) 1 1 1 1 01lieb
2 b=01 0 0 0 1 10, le. ¢
N 1 1 1. 0 | 11,ie.d
[ 3 Ic=1o- ) 0 1 1 |00 Lea
1 1 0 0 | 01,le.b :
— _ Fig. 3.4.45 State diagram of encoder of Fig. 3.4.43
4 d=11 0 0 “0 1"10,le.c .
1 | 1 0 1] 1, te, ii) To obtain output for m = 10110 _
' - N a) To oblain generator sequences and their polynomials
Table 3.4.11 iti 7 ' . .
avle 11 State transition table _ . The three outputs, their corresponding generator sequences and polynomials are

given in table 3.4.12.
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Selution : i) To obtain dimensions of the code ° ‘ b) To obtain trellis. diagram

In above figure obser\;'e that three bits are gengrated. for every message bit. Hence Fig. 3.4.44 shows the trellis diagram based on above table. It indicates the
k=1 and n=3. This is rate 1/3 encoder. There are three stages in the shift register. ¢ transitions behween current state and next states,
Hence constraint length is K = 3. '

——

. . o ' Current stales Next siates
ii) To prepare state diagram and trellis diagram . - o @ 2 e 006 o L sates

a) To prepare state transition table
Let the states of the encoder be defined as follows : B N
mzmy = 00, ie. state 'a’

mym = 01, ie. stated'

Ly

mp myp~= 10, le, state ‘¢’

mzmy = 11, j.e. state 'd" . " ' N
5 S, 110
The outputs of the encoder can be represented as, L i o1 101 N
B T ~od
Xy = m w
2= ’?"‘9 2 * Fig. 3.4.44 Trellis diagram for the convolutional encoder of Fig. 3.4.42
X3 = 1 G)m; l\
- {m @ m, ]g;, my  Putting for x; ; ¢} To obtain state diagram
= m®Pm & my f State diagram can be obtained by combining the current and next states in above
Table 3.4.11 shows the transitions between various states along with irlputs_ and figure. The state d;agmm is shown below :
outputs. . ;.
Sr. [Current state | Input Outputs ] Next state {r
No. Mz iy . Xy = m : y f‘\:
m ! © mym ¥
Xz=mBm; 2
Xy=mdmy@m, .
1 a=00 ‘o 0 0 071 00ea
. 1 1 1 1 01, leb
2 b=01 0 0 0 1 ! 10iec
: ) 1 1 1 0 [ 11,led
3 ’czui 0 0 1 1 | 00 1ea
1 1 0 0 | 0tieb :
' . Fig. 3.4.45 State diagram of encoder of Fig. 3.4.43
4 d=11 0 o P90 |10, ke.c .
1 1 6 g 1, Le. d iii) To obtain output for m = 10110 _
' . S a) To oblain generator sequences and teir polynomials
. i iti 7
Table 3.4.11 State transition table . The three outputs, their corresponding generator sequences and polynomials are

given in table 3.4.12,
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Sr. No. | Output sequence Output equation | Generator sequence Generzlof
SR - _ polynomial
1 r Xy =m 100 tn(p)=1 1
2 x2 X2 =m+my 1017 g:(p)= 14 p?
3 Xy Xy =TTy 4+ 1Ty 111 G (p)= 14 p+ p? _,_|.

Table 3.412 Genem-i‘fﬁg polyriomials.

b) Determine messago pa!}'nomial

The message sequence is given as,
= 10110
m (]‘J) = 14 pz +p 3

) Te obtain output sequences xy,x, and x3

I

the sequence of xy can be obtained by multiplyin;g g1(p) and m(p). Similarly other
sequences can be obtained. These calculations are listed in table 3.4.13,

{ T

Mo,

Sr. | Output sequence
1 ]

xp =g (p)m (p) =aip)(1+p?+ )

Cutput polynomial

Corresponding

sequence

Al L
o=

aipImip)
K14 p? e p?)

1+ p? 4+ p3
1+ 0p+ p2+ p?

W= {1011}

xf )

g

xf:!}

= (14 p2 Y1+ p2 + p*)
= '|+I[}2-Lp3+p?+p¢+p5
1h0p+ 0p2 + p3+ p 4 ps

G2(pym(p)

e

{100111}

s (p)m{p)

{1+ p+ p?){( 1+ p2 + p?)
fapla pd e prpleptapleptepd
1+ p+ 0pt+ 0p3 + Up* + p*

X

1

{110001}

Table 3.4.13 : Output polynomials and sequences for m(p)=1+p?+p?

io muftiplex x

(%

P

(2)

X
i

i

and x(") :

Final output sequence can be obtained by nuiltipicfing the three sequences length
1 .
gth of 10 is 4. Hence two zeros must be appended to

Yy . .
of 7Y and A s 6. And len

f

H

t e Yorert]

' to make lengths of all the sequences equal. The sequences are given below :
N .

A= o100
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¥ = (100111
W = (11000

Multiplexing above sequences, we get,
»n = {111 001 100 110 010 011}

‘This is the output data sequence.

3.4.10 Comparison between Linear Block Codes and Convolutional Codes

Till now we studied convolutional codes and block codes. They can be compored
on the basis of their encoding methods, decoding methods. error  cotreching

capabilities, complexity etc points. Table 3.4.14 lists the comparison.

Convolutional codes

Sr. Linear biock codes
No.
R g S — ”i
1 Black codes are generated by, Convolutional codes are guoaratnd by |
% = MG or comvolution between message suquence and i
TR grneraling sequence. 1.2,

X (p)=M(2)G{p) T I
Xp= 0 g = QL2 i
10 [
2 For a biock of messzge hits, encoded block Each message bil is encoded separately. For |
{code vecior) is generated. ' every message bit, two or more encoded bits r
. are generated. '
L : —]
i bit by bit. |

3 Coding Is blork by block.

Viterbi deeoding is used for mos! iketytood
decoding. ]

Code tree, code trelis and slate gt ams arc

4 Syndrome deonding is used for most
likelyhood decoding.

5 Generator matrices, partty check matrices and

syndrome vectors dfe used for analysis. used for analysis.
e A S
Distance propertics of the code can be siudied

6 Distance propertics of the code can be studied

from transfer function.

o
7 Generating potynomiai and generator mutrix Generating sequences o usyed 1o get ool
are used 1o get codevectors, veciors. ’ N ~
i) Foror conection ard delection copmbitity Error corection and detertion nrabiiily ;
_depends upor minfmum distance dya. depends upon free distarce Lo |
Table 3.4.14 : Comparisen of jinear hinask cades and convalutionaf codes
i
3 I
Review Cuestions i BN ;
1
al codes ? How are they different from block codes i

. What are convoliution

Giving Block diagram, (x}rr'afn the operation of any convolutional cncoder.

1
pa
3. What is constraint length for conpotutiopal encoders 7
4

What are code tree, code trellis and 5

te dagrms for convolutionud encoders?
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[ 5. Explain the viterbi algorithm and sequential.decoding of convolutional codee.
6. Compare lincar block codes, cyclic codes and convolutional codes by giving their advantages

aned disadvaittages.

Unsolved Examples

A rate Vi, K = 3, binary convolutional encoder is shown in Fig. 3.4.46.
a) Draw the tree diagrain, trellis diagram and thie state diagram for above encoder.

N
i

Fig. 3.4.46

1.

Inpute———p

by If the received signal at the decoder for eight message bits is,
¥ =((001 10 00 00 00 10 O1)
Trace e decision on a trellis or code tree diagram and foud oul message bit sequence.

2. For the convolutional cncoder shown in Fig, 3.4.47, sketch the code tree.

Fig. 3.4.47 |

3.5 Shoit Answered Questions

(2.7 What is hawming distance ? [Nov.Dec.-2004, 2 Mark, Nov/Dec.-2003, 2 Marks]

Ans. : The hamming distance between the two codevectors is equal to the number
of elements in which they differ. For example, let the two codewards be,
X = (101) and Y = (110)
These two codewords differ in second and third bits. Therefore !_he hamming

distance between X and Y is two.

S
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Q.2 Define code efficiency 7
Ans. : The code efficiency is the ratio of message bits in a block to the transmitted

bits for that block by the encoder i.e.,
miessage bils  k

code efficiency = ——229" "7

4 transmitted bits 1

2.3 What is meant by systematic aid nonsystematic codes 7
Ans. : In a systematic block code, message bits appear first and then chock bite Irt
the nonsystematic code, message and check bits cannot be identificd in the code
vector,

Q.4 What is meant by Ijnear code 7 .
Ans. : A code is linear if modulo-2 sum of any two codevectors produces another
codevector. This means any code vector can be expressed as linear combination of
other codevectors. ' .

. |

Q.5 What are the error detection and correction capabilities of Humming codes ?
Ans. : The minimum distance {dimin) of Hamming codes is ‘3. Hence it can be used
to detect doul_)le errors or correct single errors. Hamming codes are basically linear
block codes with dpi = 3. -

Q2.6 What is meant by cyclic code 7
Ans. © Cyclic codes are the subclass of lincar block codes. They have the properly
that a cyclic shift of one codeword produces another code word. For example consider
the codeword. .

X = {xn-'l.- Kn-2, ... X1, XU}
‘Let us shift above codevector to left cyclically,
X = (xn._.:z ¢ Xa =3 w00 X0, X1, Xn - ]}
Above codevector is also a valid codevector.

2.7 How syndrome is calculated in Hamiming codes and cyclic codes 7
Ans.: In Hamming codes the syndrpme is calculated as,
S = YHT
Here Y is the received and HT is the transpose of parity check matrix.

In cyclic code, the syndrome vector polynomial is given as,

Y{p)
S{p) = rem [—-,—-—J
Glp)

Here Y(p) Is received vector polynomial and G(p) is generator polynomial.
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(L8 What 15 BCH coefe 7

Ans. @ BCH codes are most extensive and powerful error correcting cyclic codes, The
decoding of BCH codes is comparatively simpler. For any positive integer 'm’ and *¢
(where t < 20- 1) there exists o BCH code with following parameters :

Block fength o= om0

Number of parity check bits 1 n = k € mt
siimimum distance @ de, = 2t + 1
(L9 Wiml s RS code 7

Ans. o These are nonbinary BCH codes. The encoder for RS codes operate on

multiple bits simultaneously. The {n,k) RS code takes the groups of m - bit symbols of
the incomminyg binary data stream. It takes such 'k’ number of symbols in one block.
Then the encoder adds (n - k) redundant symbols to form the codeword of 'n'

syvmbols
RS code has ¢
Block Jength - n = 2v — } symbols
MMessase size ok symbaols
Parity check size @ n— ko= 2t symbols
Minimum distance @ g = 2t + 1 symbols
QUIG Wial s the difference betveen Dok codes and convolutional codes 7

Ans. @ Block codes take 'k' number of ‘message bit simultaneously and form n’-bit
cocle vector, This code vector is also called block. Convolutional code takes one
message bit at a ttme and generates two or more encoded. bits. THus convolutional
codes generate a string of encoded bils for input message string.

(LT Dofine constragnt Teugih in conoolutional codes .
Ans. o Constraint length is the number of shifts over which the single message Dbit
can influence the encoder output. It is expressed in terms of message bits.

12 Dfine free distance misd coding gain.
Ans. @ Free distance s the minimum distance between code vectors. It is "‘if?i?__'-“I““{
to mintimam weight of the code vectors.

Coding gain is used as a basis of comparison for different coding=meth s 7o
achieve the same it error rate the coding gain is defined as,

- ( {T{”.. ] encoded

A = {;
h
\

No

] coded
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Yor convolufinnal coding, the codmg gain.is given as,

7

i rid
A = /

Here 't' 15 the code rate

and Wy is the free distance.
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