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The statement of above theorem can also be written as,

R SC:

A continuous time signal can be completely rcprcscr'ntred in its .samplcs and
recovered back if the sampling frequency f = ZW. Here f; is the sampling frequency |
and W is the maximum frequency present in the signal. : ;

Q.5 Mention two merits of DPCM.

Ans. 1 i) Bandwidth requirement of DPCM is less compared to PCM.
i) Quatization error is reduced because of prediction filter.
i) Number of bits used 1o represent one sample value are also reduced
compared to PCM. .

(L6 What is the main difference in DPCM and DM 7
Ans. © DM encedes the input sample by only eone bit. It sends thc' informafior} nbrl);:t
thoor - 8, nes step rise or fall. DPCM can have more than one bit for Iencnclimgang
sample. Ib sends the information about difference between actun_l. sample value
predicted sample value, -

Q.7 Hew the message can be recovered from PAM ?

Ans. : The message can be recovered from PAM by passing t.he PAM s:;;mal throlugh
reconstruction filter. The reconstruction filter integrates amplitudes of ‘IAM pulses.
Amplitude smoothing of the reconstructed signal is done to remove amplitude

discontinuities due to pulses.

. ! 35 as, i
Q.8 Wrie an expression for bandiwidih of binary PCM with N messages each with a maximum %“‘E By > oW i
e o idth of : > 8x34 kHz ie. 272 kHz |
Ans. © If v number of bits are used to code each input sample, then bandwidth o Q15 1 s repied 1o st s e pe ot it 48 o e 1 o ;
HM s given as, baschand timited to 3.6 kHz. Determine the bit rate ? i ‘
By = N -v-'?:” Ans. @ The signaling rate in PCM js given as,
Here v- £, is the bandwidth required by one message. - R,
(2.9 Huw is PDM wave converted inte PPM systems ? —

Ans. - The PDM signal is given as a clock signal to monostable m‘uItiv‘ibrator‘;i Ti\; ¢

multivibrator triggers on falling edge. Hence a PPM pulse of f1.xed w1d{hrls c};ro.nu(;he‘ 3
after falling edge of PDM pulse. PDM represents the mpuf:_’sxsmjtl ;TPfII?D;fl A
form of width of the pulse. A PPM pulse is produced after 11315 w1d't {l) [.tupdé‘_ .

In other words, the position of the PPM pulse depends upon input signal ampli &

Q10 Mentron the use of adaptive quantizer in adaptioe digital waveform coding schemes. ?

i i i i input,

Ans. :  Adaptive quantizer changes its step size according to variance of {hn? :2}; 5

signal. Hence quantization error is significantly reduced due to ada}?twe qpanh;ale :[Z‘

AI)JI’CM uses adaptive quantization. The bit rate of such' schemes is reduced du 19 43

adaptive quasitizabon.

¥

* - quantization. The quantized value is then convert

The maximum signal frequency is W

|
= 3.6 kHz. Hence minimum sampling frequency ;
will be, |
' fi=2W |
= 2x36 kHz - |
= 7.2 kHz
r = 8x72x103

Eyvor Con hl ool g )
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Q.11 What do you understand Jrom aduaplive coding 7

Ans, : In adaptive coding, the quantization step size and prediction filter

- are changed as per properties of input signal. This reduces the qu
number of bits used to re

coding at low bit rates,

coelTicients
antization error and
present the sample value, Adaptive coding is used for speech

Q.12 What is meant by guantization 7

Ans. :  While converting the signal value from a

nalog to digital, guantization is
performed. The analog value is assigned to the

nearest digital level. This is called
ed to equivalent binary value. The

quantization levels are fixed depending upon the number of bits. Quantization is

performed in every Analog to Digital Conversion, o
213 The signal to quantization noise rotio in PCM system depends o ., 5

Ans. :  The signal to quantization noise ratio in PCM is given

[%JJ S (48+6v)dB

Here v is the number of bits used to represent samples in PCM. He

as,

nce signal to

1

quantization noise ratio in PCM depends upon number of bits or quantization levels. E
14 For the transmission o normal speech signal in the PCM channel needs the BW. of . &

i by Y ¥

. ; i

Ans. 1 Speech signals have the maximum frequency of 3.4 kHz. Normally 8 bits i

PCM is used for speed. The transmission bandwidth of PCM is given

Here v number of bits i.e. .8

= 57.6 kbits/sec
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.16 What is meant by adaptive delta modulation 7 ’
y
e et b v b i e b £ e e+ v a2+ + i+ i < i

Ans. : In adaptive delta modulation, the step size is adjusted as per the slope of t}-lé?:\g}.,
: b

input signal. Step size is made high if slope of the input sijghal is hipgh. Thie avelds
slope overload distortion. '

(.17 What Is the advantage of delta modulation gver pulse mod:ulnﬁan schiemes 7 AL L = : |
Error Control Lotlmg;f
f

Ans. :  Delta modulation encodes one bit per sample. Hence signalit‘lg_fatc is reduced 4%
m DM, - : "

(3.18 Wiat shordd be Hie mindinum bandwidth required to transmif a PCM g]mmtd ?

Ans, : The minimum transmission bandwidth in PCM is given as, _
Br = oW ' - Ak s 4 Introduction

ycl 1 1 - i &) 3 . - . : ] . i
Flere v is number of bils used to represent one pulse. Errors are introduced in the data when il passes through the chaneel The chaaned
AAM g - . . - . -
: _;h:_ib’isc interferes the signal. The signal power s also reduced Tlenee preor are
" introduced. In this chapter we will sludy various types of wrror detection o

"’*c'?m-'éction techniques.
[:
3.4.1 Rationale for Coding and Types and Codes

W is the maximum signal frequency. : p

Q.18 Wit is the advantage of delta wodidation ever PCM ?

Ans, : Delta modulation uses one bit to encode one sample~Hence bit rate of delta
modulation is low compared to PCM.

0ag . » e e

The transmission of the data over the channel depends upon two parameters. They

are transmilted power and channel bandwidth. The power spectral density o1 Chasinet

noise and these two paramuters determine signal o noise power ratio. The sigoat to
-,g - noise power ratio determine the probability of error of the moduiotion schepe Por the
£ . ! ; | H - -4 - - . Cyrner
W given s:gnal to noise ratio, the error probalulity can be reduced farther o nsng
i . E . - . el L 4 : . P
" coding techniques. The coding techniques also reduce signal to noise power @tio o
K fixed probability of error.
= Fig. 3.1.1 shows the block diagram of the digital communiciasion sysbion wiieh

! E uses channel coding..—-
1 .;"" —_
i ' - Discrole
% e lnput i ] -
I Channel . CHATIRA o
: WUSSAGE i p=-—ebe] NdaigLlator = U
b . mnsis;:_u. ancoder ’ Nadulator (-,J
|
iy
- Noiay Mras e

. - Signal fron e Detrodulstor Lot .t“r.llf. ’
. Channel 108

Fig. 2.1.1 Digital commiunication system with channel encoding
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3.1.4 Examples of Error Control Codiﬁg
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) to the message bits. The .

The channel encoder adds extra bits (redundency
hannel decoder ’ Let ider t
us consider the error contro! coding scheme which transmits 000
ansmits to transmit

r the noisy channel. The ¢

encoded signal is then transmitted ove ;
identifies the redundant bits and uses them to detect and correct the errors in the | symbol 0" and 111 to transmit symbol 1" H :
message bits if any. Thus the number of errors introduced due to channel noise are . in every message (symbol) being h'ans:n';{ fre note that there are two redundant bits
minimized by encoder and decoder. Due to the redundant bits, the overall data rate and takes the decision in fm'ou; of m-:‘l 'eg(‘ e dec?de]. checks the received triplets
increascs. Hence channel has te accommodate this increased data rate, The systems: 110, then there are two 1's. Hence de‘cijr;y 'Cff the bsz. For example if the triplet is
become slightly complex because of coding technigues. . there is centainly error introduced in the‘]a; t:)-I,t :gf;:\"‘l lr; fﬁ1v011r of 1. Here note that
_ - or 100 or 010, then the decision is taken in favour of] Sa;n'ibliltl'ga‘ r;;i“’;iq::im . Obm]
' ssage symbo

15 ECEIVEd correct ¥ no mor JP t n . I ’q‘:rE
T I nf more HtHII one bIt N ear ll fr ]E 15 1n erro If rh

g Imes 54
W()llld lldve bee'll ![(l[lsmllted Wlt]lout C(}dl“g, thell it is dllflcu“ to recover th{’ Origina:

..y . s e re da Cy in } n 1 IESA | ce

lransrmlted 5ym v(l[S Ill s th dUIl in the tra 5m “f_’d messa recu

P [t b4 or at the receiver, LI'IO CUIT!EO[ codmg ha fi llO“ 8’ y o
l{:lb!bl]]t of err H a5 rQ In 1 .'lfJ{'J,\[d[ t

3.1.2 Types of Codes
ly classified as block codes and convolutional codes.

The codes are main
te of M’ number of bits in one block or

i) Block codes : These codes consis
codeword. This codeword consists  of 'k message bits and (n ~ k) redundant
bits. Such black codes are called (n, k) block codes. : aspects : _ 1
ii) Convolutional codes : The coding operation is_discrete time convolution of i. The redundancy bits in the message are called check j
. « N c . -
input sequence with the impulse response of the encoder. The convolutional - detected and corrected with the help of these bits ek bits. Ercors cen be
encoder accepts the message bits continuously and generates the encoded ii. It is not possible to detect and correct all .
. . rrect a ; , .
sequence continuously. certain limit can only be detected and co fhi: zrror in the message. Errors upto
s . < rrecied.
1. :
The Chc?k bits reduce the data rate through the channel

The codes can also be classified as linear or nonlinear codes.
i} Linecar code : If the two code words of the linear code are added by modulo-2 345
1.3 Methods of Controlling Errors

arithmetic, then it produces third codeword in the code.
There are tw i
o
main methods used for error control coding : Forward acti
. ard acting error

This is very important property of the codes, since other codewords can be correcti :
rection and Error detection with transmission

obtained by addition of existing codewords.
. . . "y B l
i) Nenlinear code : Addition of the nonlinear codewords does not necessarily . ) Forward acting error correction
produce third codeword. 5 : In this method, the errors are detected and correct db
at the receiver (decoder). The check bj cled oy proper coding technigues
. “neck bits or redundant bits are used by the recei -
: ceiver o

- | * detect an o
. ‘ t l 1 . [ i e -t .and correct errors. The error detechon and correcton capabilit eive
ss Channels . . ps—dépends o ‘ | jeeerver
3.1.3 Dis chapters. Consider 2 NEp d upon number of redundant bits in the transmitted . OIIJ:“ ot
Discrete Memoryles Z ed message. The forward

We have defined discrete memoryless channels in the previous % act
r 15 actn . .

f channel decode §23 g error correction is faster, but over all probability of er is higl
rors is higher. This s

the digital communication system of Fig, 3.1.1. Let the output 0 " bec
. ah & -
- TTtause some of the errors cannot be corrected

depends only on the present transmitted signal, and it does not depend on any  -p
Then the modulator, discrete channel and demodulator of Fig-=. £ % 1)
3.1.1 can be combinely modeled as a discrete memoryless channel. We know that' sudilz; t"« ..In this method, the decoder ch
H H I HHYH o [l e ’ .
channe! is completely described by transition probabilities P(y; / x;). Here x; 13 fl_-;; I-.’)i_d‘isﬂ‘_ards that part of the er checks the input sequence. When it detects any error
Cinput symbol to modulator from channel encoder. And y; is the outphut “.eﬁ, ¥ transmitter then again S;;Il.lencl'te ar;d Tequests the transmitter for rerransmiesion’
temodulator and input to the ch: | decoder. P(y; / x;) represen o e nsmits the part : . e
demodulator an pu ve channel decoder. P(y; / xi) rep . gﬁt_‘?'?fed. Here note. that, the decoder doespnl'm of the s;}quence in which error was
- correct the errors. It jus T
. just detects the

ts the probability © g
receiving syinbol y;, given that symbol x; was transmittq_gi: & em’m and sends requests to transmitte This
.l‘lt is slovs, r. method has lower probnbi[it}r of error

_Er“ror detection with retransmission

previous transmission.
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3.1.6 Types of Errors IS S e I . ! 17y N
There are mainly two types of efrors mttoduccd dunng tran.-smlasion on the dFl iy i 6 1+ 0 o
random errors and biirst’ erors. At SR | 2 0 0 1

i) Random errors : These errors are crea ed due to whlte gausszan “tioise m%c 24 i 3 0 : '
channel. The eérrors gcnerated due o “White gaussian noise in’ the parmu[u; : { | L
interval does not affect the performance of the system in subs“}uept m{crvaﬁ 35 T‘F’; q 0 ! 1
In other words, these errors are totally uncorrelatu’.d Hence they are also calld] oL - ) N A R
as random errors. . _ 4 3 A VR IS

. B .

i) Burst crrors : These errors are generated .due to impulsive noise in th s 6 ] 0 T
channel. These impulse noise . (bursts) are generated -due to lightning A 7 1 1 0
switching transients. These noise bursts affect several successive symbols. S“d'l - -

8 1 1 i

errors are called burst errors. The burst errors are dependent on each otherIn _

successive message intervals.

3.1.7 Some of the Important Terms Used in Error Cotitrol Codihg

Table 3.1.1 Code veclors in 3-dimensional space

The terms which are regularly used in error control coding are defined next. .
i 001 =m0 (11
Code word : The encoded block of ‘' bits is called a code word. It contams e pd
message bits and redundant bits, : 101 __"—'(Ir’:.ﬂ :[
Block length : The number of bits ‘" after coding is, called the block length of th 1 ; :l [ ! !
code. : | L w‘!__ v
o) P oo | 200 y
Code rate : The ratio of message bits (k) and the encoder output bits (n) Is callcglf:J 1o ',_/_’_ _________ é-f/
code rate. Code rate is defined by 'r' i.e., /00 10
. i z
;= K . (31 1) § ,.f
) H }1 » -
we find that 0 < rel 'Lz o Fig. 3.1.2 Code vecturs representing 3-bit code words
i . . wre . H o 5 . j - v ovreetang e G ke
% Channel data rate : It is the bit rate at the output of cncoder If the bit rate at the;; : Hamuning dislance : The hamming distance between the two code vegtons iv et
mput of encoder is R,, then channel data rate will be, “ _{E the number of elements in which they differ. For examplé let X =(101) and ¥ = (110}
35!: The two code vectors differ in second and third bits. Therefore hamming distance
Channel data rate {R,) = HR, — (31‘,}" . ! between X andY is ‘Iwa’. Hamming distance 1s denoted as d (X, Y} or simply "« . L.¢.
i o ALYy = d=2

Code vectors : An '#’ bit code word can be vmuahzed in an n-dxmcnsm:nl Splﬂ.‘\
as a vector whose elements or co-ordinates are the bits in the' code word. It is =mq:ler i
to visualize the 3-bit code words. Fig. 3. 1.2 shows the 3-bit code vectors. There will b"f )
distinct ‘8’ code words (since nurmber of code words = 2k). If we let bits by on x-ax:sfg

i

{011) ts waximum Le. 3. This is indicated by the vector diagram also.

S R LE

Thus we observe trom Fig. 3.1.2 that the hamming distance hctweses b

Minimum distance (d,,;,) : It is the smallest hamming distance belween the valid

by on y-axis and by on z-axis, then the following mble gives vanou:, pomts as ¢ i - 1-code vectors.
ot Tl H
v ~dim 5 . ¢ l I . 1 . .
cctors in the 3 ensional space. o . ,»5}' ...Error detection is possible if the received vector is not equal 1n some other code

;pector. This shows that the transmission errors in the received code vector should b
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y i i uirements
less than minimum distance dpyin. The following table lists some of the req

of error control capability of the code.

Name of errors detected / corrected Distance raquirement

Sr.No.
1 Delect upto 's" errors per word dmin 25+1
2 Correct upta 1" errors per word dmin 2 28 +1

Aenin 20+5+1

Correct upto ' orrors and delect 5 1 errors per

word

|
*

Table 3.1.2 Error control capabilities

For the (1, k) block code, the minimum distance is given as,

d min in—-k+1 - 313)

. H H !,h .
Code efficiency : The code efficiency is the ratio of message bits in a block to the

transmitted bits for that block by the encoder ie., e
message bits in a block
Code efficiency = transmitted bits Sfor the block

N its ¢ ') transmitted
We kriow that for an (n, k) block code, there are 'k’ message bits and ")f' trans
bits. Therefore code efficiency becomes,
... (3.1.4)
Code efficiency =

i ate ati .1.1) we
Il we compare the above expression with the code rate (r) of equation (3 )

find that,
£ . (315)
Code efficiency = code rate = -

: i smitted code
Weight of the code : The number of non-zero elements 11.1 the trngsm:;:or.por
vector isj called vector weight. It is denoted by w(X) where X is the code v .

ple it X=01110101, then weight of this code vector will be w (X} =5.

£
Review Questions
1. Briefly discuss the classification of codes.

2. Explain the following terms.
i} Hanvming distance 1i) Code rate i) Free distance  jv) Weiyl of code.

. ication s fﬂ?‘_
Whai is error control coding 7 Which are the functional blocks of a conumunicalion sys

T

that wecomy:lish this 7 Indicate the functfon of evch Muck. ‘_,’J

Error Contro! Coding

Information Coding Techniques

3.2 Linear Block Codes .

Principle of block coding :

Message
block .| Chanrel ,
input encoder

; kbit;l I

For the ‘block of k message
bits, (n ulf} parity bits or check
bits are added. Hence ‘the total
bits at the output’ of channel
encoder are 'n. Such codes are
called (m,k) block - codes,

. Figi3.2.1 illustrates this concept.

Coda block
output

E-ﬂ—»k—e-ﬁ[n-k)wg:i. L

t——n bil§

Fig. 3.2.1 Functior;gldgiock diagram of block Systematic codes : In the
_ systematic block'gcode,  the
message bits appear at the beginning of the code word. Thus as shown,int’ Fig. 3.2.1 ,
the message bits appear first and then check bits are tra'nsmittec\ in a block. This type
of code is called systematic code. In nonsystematic code it is not possible to identify
message bits and check bits. They are mixed in the block.

In this section we will consider binary codes. That is all transmitted digits are
binary. _

Linear code : A code is ‘linear if the *sum of any two code vectors produces
another code vector. This shows that any code vector can be expressed as a linear
combination of other code vectors. Consider that the particular code vector consists of
My, my,my, L, my message bits and €1,€2,¢3,...., ¢; check bits. Then this code vector
can be written as,

. (3.2.1)

.. (322)

X = (m,my,...m €1,€2,...¢q)
- LY
Here

Le. g are the number of redundant bits added by the encoder. The above code
vector can also be written as,

q ?__ M=k

X = (M| - (323
Here M = k - bit message vector and
C = q - bit check vector

The check bits play the role of errof detection and correction. The job of the linear
block code is to generate those ‘check bits’. The code vector can be represented as,

X = MG ... (3.2.4)
Here X Code vector of 1x 1t size or n bits -

il

* Here 'sum 15 parformed according to rnod-2 addition rules,
le. 101=0; 1P0=1: OW 1= Tand C@0=0,
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M = Message vector of 1x k size or k bits e, e o ERT- . The above steps are explained next :
e iay J 1‘3‘,‘.“&' "
and G = Generator matrix of kx n size. e : bé’;} To obtain P’ sub matrix ;
’ . i B ‘N;\l
Thus equation (3.2.4) above represents matrix form iLe. !s‘:‘? Froin equation (r’r 2.6) we knunw tsat,
. : ! iy = (I Paugld
X xip = M x G x : .‘ N (‘31-5 7
(Xlixn = [Mlixk [Glin . ) '1‘{% Conyparing this cqu.ﬂion with the given matrix, we find that,
The generator matrix depends upon the linear” block code used. Gcnl.rally it 15 v 1o G]
. i
represented as, . j 4 e = I343 [ oy .
G = j.fxrpk”'?Tkxn 1}
Here Iy = kxkidentity matrix and 11
P = kxgq submatrix and Pixg = Paesz =[1 01
' 110

The check vector can be obtained as,

. i} To obtain the equations for check bits :

C = MP
Here k=3, g=3 and n=6
Hiis i the expanded form we can write above equation af:_ o Tat is, the block size of the messape vecton is 3 bits, Hence thave sl Les total 6
P Bz =Py possible message vectors as shown below in the tabile,
Py Pp ... Py T
o Sr.No. | Bits of message vector in o H %o
[\_,;,L-_|_,.__ ﬁf]1 = fmy, my, oo, ] ne bl
. iy ! my [ 1y l
Pa Pa - Pl B B o l b i I
Biv solving the above matrix equation, check vector can be obtained. iLe. bt 8 SN . JI ]
- g
Cy = my Py @ty Poy @z Py @ ... my Py ; . : ___1 _ 0 f o i v
Cy = m P @my Poy @iz 73 @ .. @ iy P2 (329 5 . 0 , [ | J
.an ey £ - t —
Cy = my Py ©mip Prs @z Py @@ 1y Pig % 5 1 0 | 0 J
) ...and soon ;}5 _ & 1 o [ T l.
s . oy e ey .
Here note that all the additions are mod-2 additions. -;é] . i / 1 j - ]
a4 w.l et
ms Example 3.2.1 1 The genemtor matrix for a (6, 3) block code is given below. Find all  § % 1 ! ! i ;I
code vectors of this code. i L . , '
f The P submairix is given in the example ax,
M oo0:011 - LERERY
[010:101 P ;i
oo1:110 S Y P of
SO'”“?” © Ihe code vectors can be obtained through following steps : . ﬁ : :I For the check Dt vactor, there widl be fhees Bits. They con be abilained e ing;
i) Determine the P submatrix from generator matrix, "; R ;_equanon (3.2.7) or 3.2.8) ie.
e - ' . - ’ \ i ) ; . ) I 0 1 1
1i} Obtain equations for check bits using C=MP. 55;“ ST : . : ]
’ . My [C; C, Ca] = [ml My m;] 1 01 i
itit Determine check bits for every message vector. . ... -='“:§'l S . ' : 11 o
o '
: 3
| ]
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From-the above matrix multiplication we obtain, Parity check matrix (H)
Cy = (0xm) @ (mz) ® (m3) : - For every block code there is a gx n parity theck matrix (H). It is defined as
Cy = (m)®(0xny)®(ms) : . : . wed as,
and Ca = (m) ® () @ (0xm3) ¢ CHo= [P (3211
From the above three equations- we obtain, - ]"I:i‘re PT is the transpose of P sub-matrix. The P submatrix is defined earlier ir
Cy = my @ m; equation (3.2.8) as, .
Cy = m @ my (3210 . [p” e he
co o { Py J”:; P]:; P«w J
The above three equations give check bits for each block of nry, nrp, My message || o b b 1“11
o e . (3212)
ii To determine check hits and codevectors for every message vector : ‘ '
Consider the first block of (my, my, m3) =000 we have, [Pa P2 Pz Py N
C,'= 0@0=0 LA
f; : gg; g:g fe. (C1,C2,Cy)=000 The transpose of this submatrix become (byv changing rows to columns),
For second block of (ny, ma, m3) =001 we have, ST . Py Py Pyl B “|
Ty = 3] = . P P Pl Py |
C, = 0B1=1 pr - Py Py Py Py |
C, = 0®1=1 = _ ' | |' s
Cy = 0®0=0 ie (C,Cp,Ca)=110 L |
The following Table 3.2.1 lists all the message bits, their check bits and code | Py Pay Pry o P Jqd

vectors calculated as above.

. With the above equation, we can wri i
- : b . i rrite equation (3.2.11) ¢
o | Bits of message Check bits Complete code vector q n { 1) as
No. vecior in one ' rPH F:] P fu s 100.07
block IER P:g Par P2 01 0.0
m | mg | o Cy = Cy = Cy = mo o m | ms| G| G2 | G {Pa P Pao P 00001 0
e | mims | e ma L qu = | ) ) ) - . (2.2.14)
1o ]o]o 0 0 0 0o jojo 009 L
2 ool 1 1 0 o ot {1 v ][O} [PW Prg Payg Py 20 000
1 0 1 ' ° h _Jﬂ ® 7,
3 o 1t ]o i 0 ! L I ' It
. we com ati [ e i i i
- - , ; " ; . o 1 1 ] 1 1 matrix (G 1 Piare re}thon' (3.2},6) kmlci equation (3.2.11). We find that if generator
e 5 gwen, then parity check matrix (F i i
: 1 : : : : : ; : - - BE “ﬂ : parity check matrix (F) can be obtained and vice-versa.
6 | + | ol 1 1 0 1 v oot
1 o A
711 ]o0 1 1 0 RN N I A B gy
. 0 2
s |1 f 1|1 0 0 o |1 | r}r]eo o |°]

Table 3.2.1 Code vectors of (6, 3) block code of example 3.24

o

7
A
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Syt b -

Hamming codes are (1, &) lincar vlock codes.
- . . . - i > pg =7 an =
Those codes satisfy the following conditions, i Sulutions Heren and k = 4

(1) Number of check bitsq 2 3 Number of check bits are n =k =7 ~4je. q =3
. DT I T
(2} Block lenath n=2¢ 1 (@3.215) Thus 1t=21+1=2% ~1=7
(3 Number of messagebitsk=n-—g Ihis shows that the given code is hatmming code,
(4 Minimum dislance n’n_\,n =3 J t To daterminag the P submatrix
We know that the code rate is given as, “ The parity check matrix is of 4 x 1 size and is given'by eauation (3.2.i4). It can be
k “written as, (with g =3 and n =7 and k = 4) : -
ro= - .
- P Py Pa Py o100 0
= - P ’ " Y M I SR
- 129 for hamming code k=n-yg {13z 1113’- Pay P Py oo 0100 | R (el
T [P Py P Py 0 @] |
a '
= 12 .. (3.2.16) B e s
H ¥ = ““ . fJJ trom equalion 3.2.11
Putting the value of =21 «1 we get, :: On comparing parity check mateices of evuation (3.2.18) and eguantion (3017) we i,
o=} _(’]_, (3217 - | ..1 Do Py 1y 11 U|
2@‘ _1 J').I’ = "“]2 ]U:|2 .I"_-{;! ‘I".,'_' e ‘i 1 {] l J
tI LA ] |
From the above equation we observe that r=11if g>>1. I.f 13 P Iy o J LI 01 i_|
; . s . , Therefore the P submatrix can be oblained as,
3.2.2 Error Detection and Correction Capabilities of Hamming Codes . o y .
. . Rk 17 | o
Since the minimum distance {d,,,) ot Hamming code is 3, it can be used to detect o p p | Dol
. . 1dg i T [
double crrors or correct single errors. This can also be obtained from the generalized Po= [P : . | I L Pl
Table 322 i 41 T Thy i oo :
. 0 . [ Dy p oo,
For detecting double (2) errors = dgn 22+1 de dpin 23 -
and for correcling upto one (1) errors = dyjp 2 2(1) +1 i.e. dpin 23 i) To obtain the generator matrix (G) !
~, ¥ Example 3.2.2 1 The parity check matrix of a particular (7, 4) linenr block code is From equation (3.2.6) the gencrator natrix G is glven as,
' given by G o= Doy,
110100 with kw4, i 3 and 1 =7 the above nqeation becomes,
[Hl =11 101010 ... (3.2.18) ¢ = i-[ b
- G or a g ] -
1011001 ‘ A
Pulting the identity 5., col i e d G gy SUDIMAT Pye v e d s
G Findethe o ator matrix (G) as oltained in equation (3.4L18) we get,
1) List all the code vectors
1} What is the minimum distance between code vectors ?
tv) How many errors can be detected T How many errors can be correcied 7
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lor1o00:110
- c.|0010:101 : . (32.19)

0001 :011J|M
R TIPS _"—'" ol
Tiw i
This is the required generator matrix.
ii} To find all the code words :
To obtain equations for check bits .
The check bits can be obtained using equation (3.2.7), i.e.,
C = Mp

. " . “3, k=1)
Iin the more general form we can use equation (3.2.8) i.e. (with q=3

[CrCaCa)y = [momaong oy P L PO
. 111
110
[CoCaCa] = fmomamymy]) o
01 1Jm

Solving the above equation with mod-2 addition we get,
Cr o= (o) ® (Axm) ® (Ixmy) © {0xmy)
Co o= (Ixn) @ (Ixmp) ® (Oxmg) @ (xmmy)

and Cy = (Ixnn) @ (Oxma) @ (Ixmsy) @ (1xmy)

Thus the above equations are,
Cro= oo @ oy @ mig 62w
Cy = my @ ny ®my

and Cy = my @ my ©imy

To determine the code vectors
Consider for example (my ma ms myl=1 0 1 1 we get,
C; =1®0d 1=0
Co =100H 1=0
and Cy = 1®@1® 1=1
Thus for message vector of (1 0 1 1) the check bits are (C; Ca (;:t):zgl-
Therefore the systematic block code of the code vector (code word)} can be written as,

(mlmznmqu]C;-Cﬂ =(1011:00 1}

ZeTe code vector e,

t ) Error detection and correction capabilities

Information Coding Techniques 3-15°
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Using the same procedure as given above, we can obt
code vectors, Table 3.2.2 lists

weight of each code word.

ain the other code words or
all the code vectors (code words). Table also lists the

Message vector |Check bits ()

Code vector or code word f Weight of
by eq. 3.2.20

M X code

DN DY N N Y P P e e Py ey

my

"'10000

Lo oo o T o [ o la ot
Lo o] nnEE N

Table 3.2.2 Code vectors of Ex, 3.2.2
Ii) Minimum distance between codevectors-

The Table 3.2.2 lists 2¥ =24 =16 code vectors along with their weights.

Smallest weight of any non-zero code vector is 3. We know that the minimum distance
*S dmin =3, Therefore we can write : .

iy S
The

The minimum distance of a linear block code s equal to the minimm weight of any non

dmin = [0(X)],,.;X % (00... 0) . (32.21)

Since dypy, =3,

Aoin 2 541
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32 5+1
or 55 2

Thus two etrors will be detected.

and dpin 2 2E+1
3 =2 2t+1
ar < 1

Thus one error will be corrected.

I

The hamming code {d 4, =3} always two errors can be detected and single error
can be corrected by its property.

3.2.3 Encoder of (7, 4} Hamming Code

Fig. 3.2.2 shows the encoder of (7, 4) Hamming code. This encoder is implemented
for generator matrix of the example 3.2.2. The lower register contains check bits
C1. €2 and Cy. These bits are obtained from the message bits by mod-2? additions,
additions are performed according to equation (3.2.20). The mod-2 addilion

operation is nothing but exclusive-OR operation.

Input bit
saguaence LM4

Message register

My I M,

My

Code words
output

Check bits register

Fig. 3.2.2 Encode for (7, 4) hamming code or {7, 4} linear biock code

The switch ‘S* is connected to message registe and all message bits are
transmitted. The switch is then connected to the check bit register and check bits are

fransmitted. This forms a block of 7' bits. The input bits are then taken for next block.

3.2.4 Syndrome Decoding

In this section we will see the method to correct errors in linear block coding. Let
the transmitted code vector be ‘X’ and corresponding received code vector De
represented by Y. Then we can write,

Infaimation Coding Techniques 117 Ertor Control Coding

e

XN'= Y if there are no transmission errors

and ‘ X = Y il there are errors created during lransmissics:
al "

The deceder detects or corrects thinse ereors in Y by usliys e stozoed It patter in
the decoder about the code. For larger block lengths, more and mwre bits are reqinive|
jo be stored in the decoder, This increases the memory requircient red ool 1
complexuty and cost of the system, To avoid hose problems, syndrome e wliog s
used in lincar block codes. This method is illustrated in the subsegoind paragragphs.,

We know that with every (n, k) linear black code, there exists o pravily check
matrix (H) of size g x n. From equation (3.2.11) it is defined as,

= [pT .
H = fP : !’,3]

The transpose of the above matrix can be oblaine | by interchanging the rows and

avu

Lhe ¢oturnng, ie.
K
HT =

i,

]

l EET S S
o
Lfa )

4 u i
Here P s the submatrie of size ko and Ly is the ddentity miatvix et size TR

have defined P submatrix in cquation (3.2.12) earler,

Important property used in syndrome decading
The transpose of parity check mairix (h” ) has very impaorlanl property as follows,

XHT = (00 0.0 (3.223)
e e e -
wol SRR =00 R
oc e [ };_{_ B

e i S |

This 1s true for all code vectors,

Explanation with example

H ) : [ e PN -
For example consider the arny stoek ealvixn end codde vortors ol i
example 3.2.2 The parity check matix - piven Ly equation (1.2.15). The tanaspose of
this matrix can be veadily obtained as foliows -
j’i 1
jl i f}j' . .
10
i1 0 | o
HY = o114 ey
100
n1a

LU G JJ?r:! waZand ga3)
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Tz > 3.2 S5 0 N = par y d T h'd
bl 2 IE‘ ts 'II the Od(’ vectors f this Chel: atrix, C ide
able 3.2, i B T ar Tt k m ons Hle tll.

code vector in this table. 1

X =(0010101 _
Now let’s apply the property of equation (32.23), - ' o

[1 1 1]
110
1o
XHT = [0010101}, ,10 1 1/
100
010
001

A7 =3

4 Mg © above bw matrices wit ne (j" ldd“loﬂ EXCIUS“"G‘O}l
o in h '] € 8} africes wi h th(“ I }LS of mo 2 @ ( B
0w g G 2

. ’/' J.
operation) we get, ) - .

000D ODT)
T (0P 0@1@ 01O IGO0 0RO IBGIG0B00D0INO

=@ 0 O .

tors also. us X -

This proves the property. It can be proved for other Cf}d(? v:cthe el s

t iung; 1-0 the valid code vector at the transmitter. At the receiver,
relong : :

vector is Y. Then we can write,
i i i vector
YHT =(0 0....0), if X =Y i.e. no errors or Y is valid code
YHT= Non-zero, if X #Y i.e. some errors..

Definition of syndrome (5)

i it will not be from vali 1y
When some errors are present in received vector Y, lh.en 1(t3v2v;3) e shoms 1
code vectors and it will not satisfy the property of t?quih;r; ; ;,{;n_z;m output of oAt
\.vlmnuvur YHT is non-zero, some errors are present in Y:

it i s In Y. Syndrome,
product YHV is called syndreme and it is used to detect the error yTu |

= : e wri as,
represented by ‘5" and can be written as,
S = YHT

(Shey = hon [H7],., -

- e = 5 LR C - whEll a“ (‘Iel“
It noen :r0 elemen o o r(_’P esent error i the Uutpllt
e n-Zer ts f resent

S are cero, the two cases are possible,

Ucular erpor paltern,

e ik A

- Information Coding Techniques 3-19
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i} No eérror in the ou tput and Y = X

i) Y is'some other valid code vector other than X. This means the
errors are undetectable.

transmission

Lets consider on n-bit error vector E. Let this vector re

present the position of
transmission errors in Y. For example consider,

X=00110 bea transmitted vector
| Tt
" and. Y=(1001 1 bea rectived vector
T 7

Then E=(o10 1

represents the error vector
The non-zero entries represent errors in Y..
Using the mod-2 addition rules we can write,

Y=XoE

(1e0

. (3.2.28)

0&0 1 @1 1@ 0 0@
Bit by bit mod-2 additicn
={10011
Or we can write,
X=Y @®@FE

=(1®0 000001 1@0 1@
=1 011 @

- (3.2.29)

Refationship be!weer}-.syndrome vector (S) and error vector (E)

From equation (3.2.26) we know that syndrome vector is given as,
- S = YHT

e Putﬁng the value of Y =X @©F. .me equation (3.2.28) above

S=(X®pHT
= XHT & EHT

I_From the property of equation {3.2.23) we know that XHT = 0, then above
tion will be, :

- (3.2.30)
is relation shows that syndrome depends upoﬁ the error pattern only. It does not depend
particiilar message. Syndrome vector ‘S’ s of size Ixgq. Thus g bits of syndrome

_f__‘ply fepresent 21 syndrome vectors, Fach syndrome vector corresponds to
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sy Example 3.2.3 1 The parity check matfix

oy follows

[

1110:100
H=l01 11 010
1101:00 1]5,»
t errors.

‘e HiE syndrome vector for single bi

solution : Thisis a (7, 4) linear block code.
This is =7 and k=4
g = M -k=3

or single bit errors

iy To determine error pattern f
tor is a g bit vector. Fo

we know that syndrome vec
vector. Therefore there will be 2
fhat 7 single bit error patterns will be re
a n bit vector representing ¢
3 shows the single error p
terns are shown).

e a3 bit
Error vector B is rror patter
vector. Following Table 3.2.
(Note that only single bit error pat

Bits of Error vector {E)

1 ¢ 0 ] 0 0 0
R I L S Sy, ppy REPRNN
S0 1 0 0 0 0 0
A I B B L
0 0 1 0 0 0 0
0 O G 1 1] 0o O
y 5 Lth 0 0 0 o] 4 -0 4]
_.1' ____..——-—__.—-—-—_.__—#—“,,.__———‘__——————_—-—w—-——__—_-———'—
0 0 0 o 0 1 0
o T ]
0 0 0 0 0 0 1
-

Table 3.2.3 Single errof pattern of T

4

iy Calculation of syndromes

From equation (3.2.30) the syndrome vector s givm{

s = EHT

S is g bit, E is n bit and HT is nxq bits size. 1
write above cquation as,

[Shxa = IE]“?{HT]%{I

of a (7, 4k Hanmiing  code is given

13 -1 =7 non-—zero syndromes. ‘This shows

p resented by these”

atterns in a

Non-zero bits shows error
BRI,

‘or this example =7,

8
Error Gontrol Coding. 4
]

il

R

~
2

AR

¢ this example syndrome will

17 non-zero syndromes.
this example E is ‘7’ bit
7 bit error vector

v, For

PN

bit error vector

as;
=3 we can

... (3:2.31)

= (1®OBO® PEI@OWm0 teiLu®0 R RUGEY,

1

This is the syndrome

= (10
vector for first bil in error.

for second bit in errod

Syndrome
Let's caleulate symdrome for 20 it v error In fable li
error in 20 bit is given. We can withe,
ool
-
[1 1 4
ooy
. , ; i |
§ = DHO wfuloonoohd | 1!
i1 N 0|
i |
i1 o
| i
(oo

=(OG)I®0®O(BO&BU£L‘U TR O AR RGURY BEOR RS

=1 11]

This is the syndrome vector for waooned bt in error.

wmg.‘.u‘lmﬂ Coding Techniques 3 .21 oy Contret ©
fFrom the piven parity check matrix H, we can phtain its transpose UJ"" } by
inlerctunging 10Ws to columns, iLe.
fy 0 j"g
IR
11 (}’
(o= 1 1 R
1w “‘.
i
loo1]
Syndrome for first bit in error
Let's calculate syndrome for first bit error vecior L.
107}
P
[1 1 Eli
¢ = EHT =[1000000{0 I %
1100
010
00
R RN AR LIS ERE

p——— e
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Sy m s a s of HT .
ndrome vectors are rows o ‘ | ——
Th able 3.2.4 lists the error vector with single bit error and corresponding

e Table 3.2. st 2

. : edure as above.
dromes. Other syndromes can be calculated using the :-am;{}zroogm Obs‘crvc that
:‘1‘_3‘;“ table also lists the syndrome for no error vecior i.e. £=(0
e table T

t

the corresponding syndrome is $=(0 0 Q).

' I
Sr. Error vector ‘E' showing single bit error J Syndror'gf:‘ Vector |
’ r patterns f
No. B I |
o | o [ 0 ,r 0 ] 0 J 0 0 1 0 f 0 [
.’ : | ’ ' | row of 7
' } U J (4] ! 0] J 0 } 4] I 1 ’ 0 I 1 ] = 1 o
0
: r : | 0 0 r 0 } 1 1 1 1 l 20 pow of HT
o o o]
; B 0 3 v of HT
0 0] J t 40 , 4] 1] 4] 1 1
4
J [[ 1 } 4] J o] I 0 f 4] 1 ‘ i [ — 4" row of HT
5 4] 0 0 ,
B | ! l 0 = 5™ row of HT
0 7] r 4] 1 0 f 1 } 0 [ 0 1 o]
: 0 | 0 ’ 0 1 l 0 ' 0 1 0 ’ — 6" row of HT
7 ' 0 1 4] J
0 0 ‘ 1 r 0 0 ‘ 1 ' e T row of HT J
8 l 0 0 ] r o]

i i it error
Table 3.2.4 Syndromes for (7, 4) Hamming code of smgl; b:t T ome "
The following table shows that error in the first bit correspon sT 2}1 s)ndmme
able s . :
vector of §:=(101). This syndrome vector is same as the first row of HT. ¥

i ; T. This is same for
vector (§=111) for error in second bit is same as second row of M

remaining syndromes.

3.24.1 Error Correction Using Syndrome Vector

i : ing. We will
Let's see how single bit errors can be corrected using syndrome decoding
see this for (7, 4) block code. Let the transmitted code vector be,
50¢ 5 .

X = (1001110

Y

i ' Y will be
Let there be error created in the 3% bit in the received code vector Y. Then

HT
as,

Syndrome vector is equ:al to 3+

Information Coding Techniques 3.23

oding
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iv) Obtain correct vector by X=Y@®EF

Above procedure is ii]_ilstrated next :

I) To obtain syndrome vector (S)

Let’s use the parity check matrix and syndrome vectors of gxxmple 3.2.2 for this

illustration. The receiver calculates § = YT ie.
1 0 1]
111
1190
S = YHT=[101117 oo 1 1 From equation 3.2.2¢
[ 2 PP 5
010
00 1
- "t
= ﬂfDUG)](DO(BI(DOG?O 0@0@1@31@0@1@0 I(BUFDD@ICBOGDO @ 0)
=[11 0 '
Frora equation (3.2.26) and equation (3.5.30) we can write

S = YHT = gy7

Here s=vyyr =EHT = (110
i} To determine row of H7

which is same as ‘s’
nd (ifi) To determine E’

On comparing this syndrome with HT

» We observe that (S
- From Tabje 304 we can obtain the e

r

=110)is the 3 raw of
ror pattern correspondjng to this syndrome

E= (0010000

" This shows that there is an error in the third bit of Y. We have alg

row of HT, then third bit of Yis in er

© verified that, if
TOr.

) To obtaln correct vector

The correct vector can be obtained from equation (3.2.29) as,
<Y = (10 @ 111 0} encircled bit shows it is in error. 2 \ X=Yor
Now error correction can be done by adopting following steps : Sk 1e X={01111 0J@[0010000]

i} Calculate the syndrome §=YHT

ii) Check the row of HT which is same as 'S’ o (5) s
i pspondi ror vector (E). C
iii) Forp™ ruw of HT, p* bitis in error, Hence write corresponding erro or (B}

£]

; i ix of exampl o

Hero note that the assumed code vector X is derived for the parity check matm; e .

' rn E v ! ’ oY |
ud ca i lained in example 3. ) co .

- : Is using the regular procedure exp same "

3.2.3. Students can verily Ih' 9 ‘. Therefore in § = YMHY. We have used the $ameé A

veclors depend upon thae parity check matrix 1. The

‘,-_THUS a single bit errors

]

(Too111 0) which is same as transmitted code vector

can be corrected using syndrome decoding,
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What happens if double error occurs in Y 7
Let's see the case of double error in Y. Consider the same message Vortor

X =1001110

Xoe .

Let’s consider that error is present in 3rd and 4" bits. Then Y will be

Y =10 @@ 11 0 encircled bits are in error.

Then §=YHT gives,

101
rl'111
110
S = YHT=1 010110011
100
010
001

S = 101

From Table 3.2.4 we observe that the syndrome $ =101 corresponds to an error
pattern of E=1000000. This shows that there is an error in the first bit. Thus the
error detection and correction goe
errors is less compared to single errors. To correct multip

codes are used. In these codes one more extra bit is provided to correct double errors.

We know that for (n, k)
There are "Cyp =n single error patterns. ®Ca doubl
matterns and so on. Therefore to correct 't errors per word the following relation

should be satisf‘ied,

2021 5 #Cy 4 "Ca #" Ca % e+ "Ch (3233
3.2,5 Hamming Bound
We can write equation 3.2.33 as,
20 = 1+ ”C} + ”Cz + ... T ”Cr o

t

= Z nC;

i=

o

We know that g=n-k Then the above equation becomes,

zu—k > "C"

M_._

n
o

i

By taking logarithm to base 2 on both sides we get,

s wrong. The probability of occurrence of multiple
le errors, extended hamming -

biock code, there are 27 -1 distinct non-zero syndromes.
e error patterns, #Cy tripple ervor -

S

e Fadad

ceed T

P . . .
£y Intorination.Coding Techniques 3-
s,

Ercor Contral Coding

r
(%33

!
oo Y e
-k o2 dog, 2 "G

r=

o

Dividing both sides by 1owe get,

k 1 8

1-= 2z = logy o
e

T "

12U

k ,
Since code e v = the above equation will be,
Do S e

1 S
1~r 2 — loga ) "Ci L (3.2.34)
n e

This equation relates code rate 'r' with the error correction capability ol "5 crros

per code veclor in a block of " bits, We know that the error correcting capability of
the code {i.e. I ervors per code veetnr) is related to the mivdimum distance. s

mininuin distance is also catled hamming distance Equation (3.2.34) gives the velotion

dobatts ke @ e n

between code rate, number of errors to e corrected and narnber ol

This equation is also called hamming buund.

ey Example 3.2.4 ¢ For a {inear bloek code, prove with exanples that

§) The syidronte depends only on error pattern and ot on transuntied codeword.
i) All error putterns dhal differ by a codesvord have the same syndrome
Solution 1 {1} Syndrome depends only on error pattern.
Equation (3.2.30) gives the relationship between error patlens anid
S = EHT
Above equation shows that syndrame () depends only on thie virar paticnn ()

doesttot depend on codeword (N

|_._‘{:l,| o sl et 11

In example 3.2.3 we  have obianed  the el
syndromes for a particular code. Table 3.2.4 lists these error pattoers s
this table that the syndrome depends only on error pattern and not on the codeword.

(i) All crror patterns that differ by 2 codeword have the same syndromao

ot v e two code vectoss Xy anr X Tob am erar e vt

¥irst Dil (MSE), Then the éror patleri oo wh of Mese code veotars wiil Le

E =

Halfie, b,

( 100 ooy Yer 3 b coleveotnr
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Then the syndrome for first received code word will be,

= T
. (Y‘lfHe)E)HT Here Y; =X; ®F

== - l

= X\HT @ EHT

= EHT Since X{HT =0

Similarly svndrome for second received codeword will be,
Sy = Yo HT
= (X, ®E)HT
= X,HT @EHT
= EHT Since X; HT : 0 h
Here observe that, 5, =S, =EH. This shows that the error patt‘(;rr;nc;gfe;s;d:{“tot;
codeword have the same syndrome. This confirms that syndrome i P

Here Y, =X; ®E

the codeword. e
Example : o
In example 3.2.2, the parity check matrix is,
(1110100
H = J 1101010
[ 1011001

For this parity check matrix, codewords are given in table 3.2.2. Consider the two
codewords,
X, = 0001 011
and Xa = 0010 101
Let an error be introduced in first (M5B} bit of above codewords. Then we get,
Y, = @ 001 011

vs = (1) 010 101

' itisi - drome for Y. i.e.,
Here encircled bit is in error. Let us calculate syndro

111
110
101
S = ,HT =[1001011){0 1 1
100
010
lo 01,

T

- %:

Information Coding Techniques 3-27
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= [1171]

Simi!nrfy‘lét us calculate the syndrome for Y3. Le.

-

111

110

101

5= BAT=[1010101)]0 1 4
P00

~Jo 1 0

001

= [111]

Error Control Coding
—

——

Y

Thus the syndrome §; =5, =[111] even if two codewords are different, This

\
proves that for a particular error pattern syndrome is same evbn

different.

3.2.6 Syndrome Decoder for (n, k) Block Code

if codewords are

Fig. 3.2.3 shows the block diagram of a syndrome decoder for linear block code to
correct errors. The received n-bit vector 'Y" is stored in an n-bit register, From thijs

vector a syndrome is calculated using,
S = YHT

Error vector corresponding to 'S

X=Y+E
corected
code veclor

Syndrome caJTcuraror
S=YH

Look up table
for error patter, £

'Fig. 3.2.3 Syndrome decoder for linsar block code
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i i

teed and e ane 11 R

Thus H7 is stored in the syndrome calculdtor. The- 7-bit synd:ome vc-\.tur is theg

applied 1o 2 look up table of error palterns. Depending upon the parficular syndror, Vo this code, a pingle “'Ifi‘v‘u{!(n bit s transmit

an error pattern is selected. This error pattern is added (mod - 2 addition) to the 5“.,,1 ‘Then Lhe transmitted bits are
vectar Y. The output is thus, , L
eii‘:!i'i- : no= 2+l RERR

.'a— Y This code is called repeated cade smee many redundant check Dits are trarmamiihe
along with a single message bit. This code can corroct, roblocks St

Y@L = X from equalion (3. 2“.19]
; "f.fgde uses many redundant check bits, it requires a larger bandwidth.

Hoorrnrs

The block diagram shown swive can correct only smgle errors in the ﬂbUVe \
vectors, f
3273 Hadamard Code
.‘: The hadamard code ts derived from hadamard matrix. The hadamard mates
nx " square matrix. Rows of this hadatnard nmlr:x represent cade vecters. Thus a nxn

Maximum likelyhood decoding for linear block codes :
We know that there are 29 dlfferent S}ndrome.,. These syndromes can only 3
}

AN

Hc'\cu syndrome doesnot uniquely represent error vector (E). With the help gf-.
hadamard matrix, represents 'n ' code veetors of "' bits each. If the block of mensage

syrdrome we can correct only 27-1 error patterns and remaining pattérns are - ‘vector contains 'k’ bits, then
: yector contain its,

uncorrectable. Single errors are more common than double and higher errors.
Therefore single error patterns are most likely compared to doub]c and higher error now 2 '
patterns. Therefore syndrome decoding corrects single- —erfors which are most likely. )Jg This equation shows the relalionship helween mmber o1 Bt e doon
Hence syndrome decoding is called maximum likelyhood decoding. The maximum & a“i)lz;llmter (cjlf bils in the meseage vector We ko I it ol 2L
Lol ., . " ock code are
likelvhood decoding selects the code vector that has the smallest hamming distance % (ot r
fram received vector. Such code vector is obtained by % §o= e
by - : ; - = k ok
XN=Y+E Here Y is received vector @ o~ q 2% -k
I ) % This equation shaws that as onmber of bite iy the meseeys Tagn b SE e
and 'E' is the most likely error pattern. This error pattern is selected based on e parity bits become very large. This reduces the cocde rates The sode e v e A
coleulated syndrome. The maximum likelyhood decoding minimizes the word error K
probability. = m
3.2.7 Other Linear Block Codes & e E 5 . IR
3.2.7.1 Single Parity Check Bit Code This shows that with increase in 'k, the code rate becomes very smail
If t_{u:r&: are iy, my , nis,..., pi are the bits of the k-bit message word; then, ; Hadamard Matrix and Code Words
: B There are some following irnportant puints as follows
iy @, @y @ .. @m @G =0 ] - ' :
: . i) One code vector represented by hadamard mati cvnteins (68 aoms e
In the above equation C; is the parity check bit added to the message_bit. The That is one row of hadamard matrix contains all zero elements.
above equation shows that if there are even number of 1s in the message word, then - A } i ST "o r
\ . ' i} The rcode ve g contain 'y and - O Fhal s onper o o
parity check hit Cy = 0. If there are odd number of 1s in the message “word, then paﬂl\" . i) eoot IE! s clors contd 3 s ana o b blral nii
Liwek bid € - 1 Thus for this code, _ lmdamard matrix conlains hall number of 1's and hall number wi Go.
n o= k+1 K . . - d . . \ X e T
nd g =1 . : .. (3.235). iii) Every code vector differs from other codle vccmm at ; pl wes.  This means
" -
; . . : every row of hadamard matrix differs with other rows at 5 places (e half
Note that this code only detects single error but does not correct it. vy ) ‘ R
) ’ e number of places). Consider the hadamard matrix with single message bit Le.

“xF.

‘ Tk= 1. Hence,




Error Control Coding
Information Coding Techniques

= k=312 ‘
atrix for s . it wi Le. 2x2) size. The
Thus hadamard matrix for single message bit will bfe]oivr:xrr (i.e. )
il . > ) < ‘r i .
first rolw will be all zero elements. This matrix is shown o
1r's

0 01 <— All zero row

0 1

I

These elements satisfy the points

(ii} and (iii) mentioned above. . o

is 2x 2 size hadamard matrix. Observe that the second row confums i

e of len ts as zero and half as 1’s. We know that the code words are the rO\:ir

n:':bsrnf:iier?;f:;xa- H‘ere the code words are 00 and 01. Consider the hadamar

of hada s .

- _ o
matrix for two message bits (i.e. k=2), Then we have,

n o= 2¥=22=4 ‘ )
Thus the hadamard matrix will be of size 4 % 4, This matrix is :'.I-I.nwr‘l below. |
Ha He] .. (3.2.41)
o = Lfg H2.

o o i lement of
Here M, is the matrix given in equation (3.2.40) above H is the comp
matrix [f3 will be,

=)o

... {3.2.42)

1 is y the matrix
Thus in the above matrix every element of H, is complemented. Then
Iy given by equation 3.2.41 above will be,

H, /“ 2
| j o] 1i
Hm | Ol 2 .. (3243)
fo o] 1 1
o 1i i1 o

= Tt v | hes vectors
’ ¢ 1b0 e m'ltrix 'IS Of SiZ(-_‘ ‘1 x 4 :lI‘ld It giVES f@tlr COd[_‘ WOI‘dS. 1:.“6' C(}dt(:'r -
Lo A& ve . ‘
e (0000), (0101), (0011) and (0110) observe that the f‘lbow:l? codle ‘ ectors iIr'd
d d matrix sahsflE:‘:; all th(‘l rhl(‘e points (iiSCllSS!'.l'i eﬂrll(."l. .31!1(‘(2 evt.l'}‘ ((?de wo d
addantar a &

¥y - L s 2 er « 5 15 AT 1l1'mg0[lﬂ| to
rus, tl cse COdE \-‘\"Urdb are o :
'.iffer,‘, b J} plﬂ(' 5 Wlth th ()lh Od(" wWOord I

. (3.2.40)

¥
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cach other over complete "' bits, Equation (3.2.41) can be gener
number of bits as follows.

H - rH w
n = LHn E,IJ

alized further to higher

e (3.2.44)
Here Hy is the complement matrix of H,.

Since every code word in hadamard matrix differs every other code word by ?

the minimum distance between the code words wii] be,

dmin = 3 .. (3.2.45)
-2 .
2
= 2k-1 < (3.2.46)
We know that, the correct upto t errors per words,
Bin = 2 +1
Putting the value of Amin =251 in above equation,
261 > 2541
/ 3.:;‘_1 < (3.2.47)

Drawback : Since hadamard code uses many check bits, its code rate
ce to transmit the signal at higher rates, higher bandwidths

3.2.7.4 Extended Codes

is very low.
are required.

Hen

We know that every (m,k) linear block code has
column of zero elements (except last element) and
parity check matrix as shown below.

a parity check matrix H. Ope
one row of 1's is added to the

.. (3.2.48)

fa+x(n+1}

‘ The code turned by such parity check matrix is called extended code. Thus the
code will be deseribed as (n+1, k) linear block code. The newly formed parity check

matrix H, will be of size (9+1) by (n+1). Consider the parity check matrix of (7, 4)
hamming code cf equation (32.18). It is reproduced below
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1110100
1101010
i1¢11001

H =
Ju7

The parity check matrix for extended code will be (using equation (3.2.48))

Newly added row and column,

With the above extended parity check matrix, the minimum distance for extended

o P
code will be,

HIr(miin) = dmin + 1 ces {3.2.49)

Therefore for extended hamming code d. g =4.

Advantage :
This code can detect more number of errors compared to normal (n, k} block code.
=, But it does not have any advantage of error correction. :
SN
B,/S,E.?.S Dual Code

‘y We know that for (n, k) block code,
' Generator matrix, Gl = [Tout] Pen ], . (3.2.50)
Parity check matrix, [H]M = [p;;x“*?”i]w, . (3.2.51)
Here g = n —k. Now consider the matrix product HST. ie.,
Tk ]
R e
HGT = [quk I,,,q]m [_HPT, |
: Lowrd L
- [pT T -
- {P (D p ]q:k =0

Le. J HGT =0

. {3.2.52)

trror waatrol Codirg

———

g o

o
ey

e A D e 4

o A
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check malrices !

11 4] a7
booo-an )
G = 61 00 11
001 103
(00 01 ] lawr
Then HGT will be,
’ ' 00 0]
1 u’
1110:100 U[}} 0
HGT =11 01 :01 0 O[OI/
lOli:UUlhyi'I‘.(,
- H ]
11 0 1
01 E?JU(

1M1l 181 101 0@ 0]
1dr1 bl O 0 1:‘»;1] P
101 000 101 1®1 |, |

Definition of dual code &~
‘Consider an (n, k) block cade. As illustrated above, this code satisfies,
HGT = 0

Then the (a0 -k} ie. (n, q) block vede @ calied dual code
block code, there exists a dual code of size (1, Q).

Thvag fae pvery i, k)

We have defined the generator matrix of (n, k)
Stmilarly for (n, q) block code generator matrix will be,

[Cluw = [fq\.',ff'.,.‘;i:m s
Similacly frem -equation (3.2.52), we

block cule in equabion (302005,

can write the p:u‘fly check mahix for {n, )

" block code as,

{Hd},, = [Pfxq] it ]1 e (3.254)
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il
t us use the property of matrix : [AB] =BTAT |

i k- Here le
k ) . . Then parity chec
that (n, q) code is dual code of {n, k) bl?uk l;cf)d;ual code. S A -
We know ’ ix (G) given above are matrices ‘ : [G‘rmrJ Hi. = {0]“’%
. nd generator matrix (G) g - trix G and
mtrx (D) 20 & (n, k) linear block code with generator matr
Consider an (n,

R cole genealed W s culed e domt G056 F Here [GL&]T =Gt and [U]T will be zero matrix. Hence
n -k co v i
1 trix of dual code.
G is the parity check ma

ie, 1

mmp Example 3.2.5 : .
parity check matrix:H. The (n,

above equation become,
(n, k) code. Show that the matrix

(Caw HI,,],., = [0] .,

d (ifi) Conclusion of equation (3.2.57) and
Solution : (i) Consider (n, k) block code

|
‘ |
above equation . |
i defined as,

i i K matrix a

matrix and parity chec

|
We derived hwo results,

== - '
For this code generator e (3.2.55)

_ For (n, k) code - Hewn GT =
- [Glivw = [Hrok] Pexa]g e (3.2.56) (n, k) [ U ’M],,u (0] ux
o rf'{]q," = [P:vk[!qnq]qml '!
heck malrix satisfy following property, For (n, q) code : G duat H;;m = {O]qu |
atrix and parity chec ¢ LA 7 5 . |
The generator ma |
. hxk i .
HGT] - p‘;l'"k }q,q] BT Pt _ From above equations we can conclude, _
[ - =k guk ek : . r !
(3‘2'57} : [G J;rx.l’ = [Hﬂum’]-sxk !
= _[PT ® PTL“ =0 Taking transpdse of both the sides,
d G = [H
. : block code . The generator an [G],. [Hawa ],
(iiy Consider (n,; qt) ; q) code is dual code of {n, k) block code. & ” "
We koow that (n, S

o (3.2.60)
m equation (3.2.53) and

| enerator maleix of (n, k) block code is the arity check
s of this (n, q) code can be written fro , , »

Above equation shows that

parity check malrice of its dual code (ie. (1, g) code)

- equation (3.2.54) as,
[G:hm! ].]' wn [Iqxq
T
I-[-I‘f”’; ]J( o [P)( Wi

that they ca
Here we have written Gaun and Hawr so th v

and H of (n, k) code.

1 ﬁs 1es The prop t f q ' o " Aﬁd h nce des:;gn l ”” Jr Ck code IUI-HI & N‘ll"ﬂi.??ﬁf?.’? ﬂf’sfr”fa Of H]'r.:'{’. I?.FIC}" n -’?h’.’SSl’?‘%‘{.’
h() I (1:{10 alsg s5a . . "8 ’
. NOW ‘th us ChQCk “’}\Ct =+ ( '3 C[) -+ ' A ! ; f {1‘! , . ear bg d

%: Solution ; .
(3.2.52), i.e, fige >olution i) Proof of the equation

For linear block code

|
it k
i

.. (3.2.58)
. (3.2.59)

p‘”k:qun
Ih-el:]

This'is the required proof of the given statement.

M= Example 3.2.6 :
prove that,

For' @ lnear block code which corrects single error per code vector,
kxn

n be differentiated I'I‘Om.ug

n= k:Ing (n+1)

[ o | -

L .
kxn [Pk-“? wxg

., we know from equation (3.2.33) that,
[I‘Idunf c?;rmf] = [pk,‘q

2a-1 > "C1+"C2 Fok "G,

. ! Teeq =0 This equation gives the condition for correction of ‘¢ errors per word. For
= [P @ P ]hrq Correction of single error per code vector {f =1} the above equation will have only first
Haut Glat 140e = [0k ierm on RHS; j.e,
i.e. {-}{duuri - dual kwg - xq ] . .
’ Taking transpose of both the sides of above equation, _ 2 > g,
a I.T\g 2 b

g

9 SinC'f‘.“?:n"k and"Clan
2(’!’—*}_1 > n

T T
- [}'{dual’ G;uaf}_l:xq = {0]“"
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wep Essauple 3.2.7 & For a systewaliz sincer bioek gude, the three parity vheck Jigie, O

(n—*ky = loga (n +1)
(g winl Cg are gpiven by,

oz kslogaiu+1) . (3.2.61)
which is prox'cd, Cywdy Ddy @ dy ‘|
iiy To determine linear block code Gy =i B dy r‘ ENEDY
We have to design-a linear Block code with dpin =3 and k=8 We know that the Co=dy, D d; J
code with dmie =3 is a single error correcting code. Hence we can use the relation . o .
_ ) N ) i} Construct generalor malrix
piven by cquation (3.2.61) above. i
it} Construct code generated | i ;
Lo for single error correction (o = 3) B gener by this matrix
i) Delermine error corveciing capubilit
noz ko4 loga{n=l) o clingg capubility
o . . in) Prepare a suitnbie decoding table
Putting &k =8 as given, . . -
vl Decode the received wards 101100 and 000110
n oz B+ loga(n+1) sol .
: . Solution ;i) To obtain the gener: alrix
On solving we get n =12 . Thus the code will be (12, 8). Therefore q=12-8=4. - generator matrix :
The parity check matrix will be of size qx n, e parity check-matrix size will be 4x12 We know that the check bits, messape bits and parity matine ave eabiiod o,
Lo . [CiCs Colixs = [ch d_z d3iva [Plaxa B IR
(Hlion = (PTids]iae The above equation can be written as
The matrix P witl be of size 4x 8and 4 will be an identity matrix of size 4x 4. l'p“ Py P
Gelect the PTmatrix such that, (CaCsCa) = [y da o i e I
i) Its size should be 4 x 8. This is P submatrix will be of size 8x 4. | Pn Pa P
i) No row should be zero, and Hence,
iy All rows should be distinct. Cy=di Py @dy Py ®dy Py ]
Such matrix is given below Cs =dy Py @ily P @ ddy P :r (3
' [1 0011010 Co=dy Py @dy Py Dy Py |
. . 11000111 . . . )
o pPTo= iO 101011 Comparing the above \Eiua;wr;s with equation (3.2.62) wo get parily e
00110101 , [
L : 148 P=11 0 BRI
]
{1 0 }J

JHere note that you have the freedom of which combination should form a

particular colimn.. Therefore parity check matrix will be, The generator matrix is given as
fMoo11010%: 000 “ G=i:‘1.s‘-uvi
l110001110100 | ;
‘01101011-0010 5 = fih ¢ Pral

OOIIUI{)].OODl“u Ik 10011 1]

—_— T ={0 1 01 1 0l

e ' : o 60 .10t

s vectors can be obtained.

From the above matrix generator matrix and code
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ii) To obtain the code vectors : ‘ o o
In this code, there are 3 message bits and 3 check bits. Hence th}s 1slh{:.., C?::)'deo
ode. Table 3.2.5 shows the message bits, check bits and code vectors for this ,
C . AT s &

g de word X Welight of
Sr. [Message vector M|Check bits as per Code vector or code o
’ eqtm\tion 3.251 C . o)
No. ! ]
o, dz dy ' Cy ’ Cs Cg oy dy ) dy Cy Cs Cs
1 :
! 0 o]
1] oo ' o ofloflofofoflao]al]o _
| | 0 1 1 0 1 3
2 0. o] r 1 I 1 [ 0 1 0 -
- | 1 4]
s ] o ‘ 1 f o | 1 1 1 I 0 ’ o | 1] 0| 1 :
—-_4_.— “h}]._ 1 , 1 1 0 ‘ 1 J 1 I 4] ’ 1 1 0 1 i
4
0 0 LI 1
o e o [ N
G 1 0 } 1 [ Q ‘ 1 { a |J 1 J 0 ‘ 1 o 1 l .
1 3
T I 1 r 1 ] 0 [ [} [ 4] 1 ’ 1 r 1 ' 0 0 0
| ‘ 1 0 0 4
8 1 1 ’ 1 [ 1 J 1 ¢} 0 ! 1 1 [ 1

Table 3.2.5 : Code vectors
iti) To obtain error correcting capability :

The minimum distance between the code vector is,

dovin = 10X} min ; X= (00 ...0)
From table 3.2.5, it is clear that
Amin = 3
dmin 2 5+ 1
3 .2 s+ 1
s = 2
Thus two errors will be detected
- and Ain = 2t + 1
- 32 2t+1
- t <1
Thus one error will be corrected.
iv} To prepare the decoding table : - _
The parity check matrix (H) is given as, 2

H = [PT N Jr,_‘-f,.-f.n
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Hence transpose of above matrix becomes,
P
HT =

I'T LR ]

From equation 3,2.65, above matrix will be,

Do (3.2.67)
o

1
L

The syndrome vector (S) can be calculated from error vector (E) and HT by
equation (3.2.30) as,

S = EHT

Here E is the 1x 6 size error vector. Let us calculate syndrome for 2m pig in error,
The E wil] be,
E=1(01000 0]

Hence syndrome will be (from § = EHT),

111
110
S=1p10000 °!
_ 10 0
010
001

= [110]

above syndrome vector corrésponds to 27 row of HT. Similarly other
can be obtained directly from rows of HT. Table 3.2.6 shows the error
d corresponding syndrome vectors.

Error vector "' showing single

. Comments
bit error pattarns

Syndrome vector
g

+ First row of (47

+ Second row of 57

¢ Third row of 4T
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5 ' 1] o] Q 1 4] 0 1 ’ [¢] o]  Fourth row Gf 47 '\';E;

[ [ 0 0 0 0 1 0 0 f 1 0 o Plith oo of 117 ' "“»

l 7 ’ o] o o o] l 0 1 0 ’ 0 1 « Bixth row of HT ;:'E
— 3
Table 3.2.6 Decoding table N

v} To decode reccived words
To decode 101100 :
Here observe that the received word 101100 is not standard codevector froy

Table3.2.5. Hence there is an error in received word. Let,

[101100]
From equation (3.2.26), thé syndrome can be calculated for this word. i.e,,
S = YHT
Putting the values,
1 11
110
S=[101100] PO
100
010
0 01

=[1640@19190@00 10200 0Q0G0 1021 0QID{)
= [110]
Note that (1 1 0] is second syndrome in Tuable 3.2.6, and the corresponding error
pattern s, {
E=[010000]
T-i:'w correct word is obtained as,
X =Y@E
(101100)©(010000)

i}

I A N
LT A S T W

This is whe correct word.

Todecode 000110
This also contains an error since it is not valid codeword from table 3.2.5. Let,

Y = [000110]

Hence syndrome can be obtained as
S = YHT

Information Coding Techniques J-41 Error Contral Coding

11 1]
g

1 01

5= 1[0001 IUIJ
1 00

10
00 1]
= {110

From Table 3.2.6, the corresponding error pattern is,
E=1[010000]

The correct codeword is given as, .
X = YDE
= [000110]@[010000]
= 010110

This is the correct word.

med  Example 3.2.8 1 An error condrol colde has the following parity check matrix :

i} Determine the generator matrx G,

) Fond the codereond that begins witlt 101

itf) Decode the recewed codeword 110110, Comment mit error delection qnd correction
capability of this code.

i) Wil is the velation between G and £ 7 Verify the sanic.

E] R

Solutian : This is {6, 3) code. Flence n = &, & = 0 and

i} To obtain the generator matrix
2.2.11)

The parity cheek matrix is given as equation (2.2.77]
d o ApT Lyt
R {-‘j - 1[.-; i w
Henee equation 3.2.65 can be writton as,

1T 0 11 0 0]
H=(1110:01 0]
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10 W
11 0

o1 1)

pro=

Hence the matrix T will be,

[1 10
Po=lo 1 1]
oo 1]

The generator matrix is given as {equation 3.2.6)
G = “Jr : kaq}&xrr
T 00:1 1 9
G=10110:01 1
(000 1:1 01

- (3.2.69)

This is the required fenerator matrix,
ii) To obtain the code word that begins with 101

Here the codeword begins with 101. This means first three bits of fhe‘c.oc:;worc!!’
are 101, Length of the message bits is k=3 In systematic code, first ‘k* bits o

irst ‘3" bits i i! ] its.
codeword are message bits, Hence first '3 bits in every codeword will be message b
Thus 101 are message bits. e,

M = (101
This is (6, 3) code. The three check bits can be obtained by the equation,
C = MP
Pntting appropriate matrices,
11 0]
C=1to1)o 1 Ii'r
(10 1]

= [1B0®]1 1®@000 0do@d1)=(011]
Henee the eode vector is,
X o= (my my my GG C)=0101011)
Thus the codeword that begins with 101 ..is X=10107 1.
iii) To decode 1101 1 ¢ :
Let the received codeword be,
Y = 110110

Then the syndrome is given as,

Solution D

.= YmRT

Putting the matrices in above equation,

110
01 1
.11 0 1
5:{11011m1 o o
01 0 .
00 1
=H@0$0@1@0@01@1@0@0@

This is the second r

ow of HT. Hence there is an error in an L
Hence the codeword is,

Tror in the second bip

X =100110

Here note that the second bit is m

ade 0 to remove an error,

Error correction capability

It can be verified for this code that o
examples that such codes can detec|
Supported by following equations :

d

min =3. And we have seen in the carligr
t upto two errors and correct single error.,

This is
min 2 S5+1 for 4.,
min 22041 for 4.

Here s is the number of errors detected and ¢ the number of CITOTS Corrected.

The generator matrix of a (6, 3) systematic block code 1s Siven by

1000171
G=1J01 01 01
001 13 0
i. Find the code vectors
il. Find the parity check maprix
it Find the errop syndrome
i} To obtain code vectors :

Refer to example (3.2.1). The code vectors are obtained in this example.

1
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ii) To obtain parity check matrix (H) : i o1t
The P submatrix is obtained in example (3.2.1) as, o

0 1 1] o o
P=1101 5 = [100000) 1 u{
_1 1 0_ ;n 1 r,]i
0o 1]

Hence the transpose of this matrix will be,
1@ 0®LIEoH0a0 1 s [ 1w

[UCDU(DOG)UCDULDU

o 1 17

1 o1 =011

110 o ) I )

- - Thus the syndrome for error in first bit corresponds ta [lest row of #H1 Sidarly it
Table 327 shows ail the single hit error

lé_;"’.? can be shown for other crror patterns.

e ; e .
he parity check matrix is given by equation (3.2.11) as, _
H = [PT: 1] é : patierns and their corresponding error syndromes
\ Here 1 is the gx g identity matrix. In this example n = 6, k=3 and q = 3. Hence ';“" sr. |Ercor vactor E showlng single|  Syndrome 5
above equation becomes, ) ey No. bit efror palterns
L ) - - L I —————————
ilol olofjolojojop0 0

[
L
o B B
[T ]
- o o

0
H = |1
,1

iii} To find error syndrome :
We obtained parity check matrix just now. The transpose of the parity check 3

matrix will be,

01 1]
101 >
) 11
i\ HT = Lo 0 < Table 3.2.7 Error Syndromes
0 ’ iv) Rulation between G and H
' 010 The relation between G and H is given by equation (3.2.60) 1o,
oo HGT = 0
Taking transpose of both the sides

. T’hle syndrome is q = 3 bits in length. The error pattern vector will consists of n=6
bits. The syndrome vector is given by equation (3.2.30) as T L
S = EHT ' (MG RO
ot theve bo orror | . ) . o ABY =BT AT Hence above egquaticn Lo
Lot fhere be error in the first bit. Hence érror pattern will be, E= [1 000 0 0. st ABy =BIAT Heace above eiatios

We know !
(GT)'HT = ()

Putting values in above equation,
Here {U)] =(. Therefore abéve equation wili be,

L GHT =0
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Yy

Thus the relation between G and H is,
- GHT =0

HGT

mmp Example 3.2.10 1 The parity check bils of a (8,4) block code are generated by,

Cs
Cs
Cy

Cs

it

ﬂr] ".'{f;_ +d.(
dy +{12 +{f3
dy +idg +dy

dy +ﬂr3 +d4

Where dy,d, . ds and dy are the message bils,

i) Find the generator matrix and the parity check matrix for this code.

i1} List nll code vectors

aprge - - —"
iii) Find the errors detecting and correcting capabilities of this-cod®.

fv) Show through an example that this code delects upto 3 errors.

Solution :

. . . ated 2
We know that the check bits, message bits and parity matrix are related as,

[C5 CeCrCalg

Hence,

Cg

Comparing above equations with the given check bit equations we find that,

P]_[ =1
Py =1
Py =1

Py =0

= [dydydsdg] ixa [Plins

= [d} d';_ d3 d.{]

= p“ dI (szld'z i

P P2 Pi
Py Pn Py
Py Py Py
Pa P Pu

P.'il .rfa fDP.;[ d4

i} To obtain the generator matrix and parity check matrix

Py
Py
Py
Pys

PIZ dl (szz dz G)P;Q d3 EDP,;Z d..g

= Piad) @ Py dy ®Payds ®Pidy

Piy'di ® Py dy © Py d3 ® Paa da

Py =1
Py =1
Pyy =0
Py =1 "

Py =0
Py =1
Pag =1
Py =1

Py =1

Pi =0
Per=1 ]
Pu=1

v

Infermation Coding Techniques 3-47 Error Control Coding
Hence P matrix can be formed as,
Tnro
11 01
P =
0111
1 011
Generator matrix is given as,
G.'.wr = [;i : Pl'vr;]
1 000 1110
' 0100:1101 p
G = ;
001 0 0111
0001101 1],
The parity check matrix is glven as,
H = [PT Iel
1 01 1 0 06 0
/1110 0100
1 011:001 0
01 11:000 1]

i) To Obtain all Code Vectors

All the code v;ictors’in'systematic form can be obtained from mess

check bits. The check bits are given as,

s
Cls

i}

d] @:fz ®d4

d1 @{!2 Gﬂd“;

Cr = dy@dyDd,
Cs = dy®d; @d,

Then the code vector can be expressed as,

X

(Ift d;g d_-| ff4 Cs L‘bf}'(‘ﬁ)

age bits ane
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Table 3.2.8 lists all the messages, check bits, codevectors and weights.
o

Porvann bl s fan it oo i b

5r. Message vector Check bits Cide voctor X . o i N - .
Bl matreduced o this codeveator as folfows
|di dy dy d|C; C T, Cpfdy dy dy d Cs C C; G4 _ ¥=101 1001
[o o o o J 0 0 0o o0 o & 0 © 0 0 o 0 L [\ )i
’ o} { 4] 1 { 1 0 1 1 4] 0 i] 101 4] 1 1 ] 4 THase bils are:
1 < — Wt edtor
|
P00 1 o J o 1 1 140 0 1t ©O 0 1 1 1 J 4
s 1o o 1 % 11 0 olo o 1 1 1 1 o o | 4 Let us calculate the syndrome for this received vector. i,
| 0 1 o o 1 1 ol 1 o] 1 0 o] 1 1 4] 1 4 % .
: b oo
S| 1t 0 110 1 1 0of0o 1 0 1 o0 1 1 g 4 ! i
£ oo
|| ° i 1 ol 0 1 ofo 1 1 0 1 0 1 o 4 < lo 1 1
(611 } o ¢ o 1]Jeo 1t 4 t 0 0 o0 1 4 el IV 1]
- - i = [10111001) |
f 10 o o0 f 1 1 o0f{1 0 0 071 1 1 o 4 Z 1o ﬂi
| %
b1 0 o g r[ 0 1 0o 1]t 0o 0o 1 0 1 0. 1 ] : T 4 LY
] ] i }n U
o1 o0 00 110 1 0 1 0 0 1 ] 4 % | !
— I & (v-u 01 |
0 0 0 4 i
1 1T 1]0 0 1t 0j1 0 1 1 0 1 ,? Do 0@ o0 ® 1 @1 6 0 o« L
1 b 0 0 l o o 1 1 i 1 ¢ O 0 0 1 1 4 *f I ® 0 1 W0 & 0w
B = o , - P
i 1 0 1 J 1 0 0 0 1 1 0 1 1 o 0 0 4 . 1T & 0@ 1w 1 @ 0 oo a0 o
. ® 0 @ oS 1 e 0 o s n
L1 1 1 0 ' 0 1 0 of1 1 1 0 0 1 0 o ‘ 4 . 0 ® 0@ 1% 1w - ;
e 1 . .
[ 1 1 1r1 T 1 11 1 1 1 101 1] B - =[1011]
The syndrome is nonzero. This means the code detects Ut tee g

Table 3.2.8 Codevectors of Ex, 3.2.9
g Example 3.2.11 @ A generaior miainy tf (0, 3) lmear Bluck cecde o

iii} Error detecting and correcting capabilities
From table 3.2.8 it is clear that minimum' weight of the code is 4. Hence minimum 1001 1 1)
. . . h { !
distance is d nin =4. Hence 's' errors are detected if, : G ( |0 '
=1 U oo

dn:in 2 s5+1 ' LE" [S T VI S I
4 2z s5+1 or T3 ) Ea
11 i be d . ’ . 1. Determine the Iﬂ'n“'" " for e abope code ey
s tiree errors can be detected. : peg e . y ) . .
- aeee capahilitios. If e recvived seqecmce i~ D010 L deroim : P

Similarly 't' error will be corrected if, ' Solution :  For this code n = 6 and b .. -
) M [~ 2 = . [ -

Tin 2 2t +
i 1 ;]:{1‘3‘—"1_‘

SR

L, 4 2 2t+1 ie, tg

.
Thus one error car be corrected by this code.
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{i) To obtain 'dmin' for this code
To determine ' nin ' tve have te findout all the codewords.

To obtain I’ submatrix
G = [“ ZPL-,,?]

We know that,
= [fh_\lp.h:\]

1 00 : Py P2 Pa
= |0 1 0 Pn P Pn
001 Py Pn Pn
Comparing above matrix with that given in the problem,
111
P=1{110
011

To obtain equations for check bits

Wae knnw that the check bits are given as,
C = MP

[Cl CaCy ]1:3 = [ml niy 3 ]1:3 [P]3 3

1.e.
[1 11
[m, mymatl 1 0
011

= [m @my m ® mg ©m;

Thus the equations for check bits are,

@ ma ]
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Sr. |Message vedtor M| Check bits C Code vector X Wt. of
Ha. the code

my ma m € €3 € my ma n & 2 c; wiX)
1 0 0 0 0 0 o 0 o 0 0 o 0 0
2o 0o 1t fo 1 1o o 1 o 1 1| g3
3 0 1 0 1 1 0 e 1 0 1 1 0 3
4 0 1 1 1 0 1 o 1 1 1 0 1 4
5 1 0 0 1 1 1 1 0 o 1 1 7 4
6 1 0 1 1 o 0 1 0 1 1 0 0 / 3
7 1.0 0 0 1 1 1 0 0 0 1 3
8 | 1 o1l e 1 0] 1 1 0 o |«

Table 3.2.9 : Calculations of Ex. 3.2.11
As shown in above table, consider the message vector of mymams =001, Then

check bits are calculated as,

€ = mOm=000=0
m Oma BGmy=080B1=1
c3 = mBm=0@01=1

and the code vector will be,

Cy =

Hence ¢;c3c3 =011,
. X = (mmyms c1cac3)=001011

Weight of the code and d i

As shown in table 3.2.9, the minimum weight of the code is 3. Hence,

Sin ce dmin

dmin

=3
= [0y =3

il C, = my @ ng
Cy = m ®my Gms i} Error correction and delection capabilities
2 = m
[ s+1
Cy = m ®&my m; >
z s+1
- To deétermine the codevectors _ g
Il be nine message vectors. Hence therﬁg@ s < 2

Since there are three message bits, there wi T e ek bi:!;f:gj

rs. Table 3.2.9 lists the codevectors of thig t

- will be nine codevecto 5 ._
are calculated as per above equations. .___..:‘,g" and do 2 a1
i B 32 241
=1

Thus one error will be corrected.

=1
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This is hamming code (dmin =3) and it always detects double errors and corr
single ervors.

(iti) To obtain message bits, f Y=101101

We have to determine whether the received vector is a valid codevector, This cupise

be done by calculating syndrome.
To obtain syndrome (S)

Syndrome vector is given as,

5 = YHT
P
We Lnow that HT =
_]‘,I' foxq

Putting the value of P submatrix in above equation,

'ff g
I 11 ’Et:
11 0 _}:.C"TIJ
e 01 1 ;:'
l 1 0 0 3
010
0 01

Hence syndrome becomes,

&

s
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i '."'%mmct vEctur canr be obtained by
' X = Y®E

S0 110 1)® (0004000 1]
100000100100 0011w
101100 s

it

'.This is transmitted vector.
¢ know thal,
X
X =

H

(ryma g €16303)
(101 10 0)as caleulated above.
On comparing above two equations, the message bits are,

101

-
i Niyhtzing =
3

¢yt o G
O sy Example 3.2.12 1 The parity digils of a (6, 3) linear block code ure SEUEH ts,

g =y W omy, 5= By @ my and g =m @ m,

i) Determine the generator and parity check matrices for the systematic code,

ii) Comment on ervor detecltion and error correction, capabilities of the code,
iti) If the received sequence is 101 10 1, delermine the message word,

Solution : (i) To ubtain the generator matrix (G} and parity check roatrix (14).

1 11
[1 10 : " We know that the check bits, the I™sub matrix and message bits are reiatod as,
i : )
011 ? ; ' [C“ €5 €6 ]1‘,‘3.-—:"{?”1 fiiy niy .][‘”}3 3
S5 =[101101] b4 A e . )
| 1 00 7 The above equation can be written as,
010 : : URLTIRI O (PO
K 0.0 1 : feacsco] = [my mg iy T Py by
< Lf‘jsl Pya I3
= [190D0O1@0B0 100D1D0D 00 1900100 0@1] .
= [001) Le, Co = mBy @ nigly @ by,
I . . . €s = Py O wgly ©mal
Here the syndrome is nonzero. Hence ther i= 21 error in the received codevector. S S 112 282 N s it
: Ce = M4y @ malhyy & mgy Py
To locate the error i , . ] . , . )
: ) i Comparing above equations with fhe siven equations of ¢, 00 and ¢ we gl
On comparing syndrome S = 0 0 1 with the rows of HT, we find that &* "U“'-._f.i? . jvalues of P’ matrix.ie.,
matches with syndrome. Hence 6% bit is in error. Error vector can be written as, :;: ! By =1 Pn =1 Py =1
E={(000001) Pp=1 Py =] Py =0
Py =0 Pay =1 Py =

5
=
I

el

%




Information Coding. Techniques 3-54

111
P=1110
0113!3

The generator matrix is given as,
G = {]1 ipk,q]

= [}3:]’3,(3] )
1T 00 111 ‘
: = [0 10:1 10
~ o001 :011],
f'/
And the parity check matrix is given as,
H = [PT:I,,]W -
['l 10 100
=11 11 010
Ll 01 001},

(if) and (iii) ) .
The generator matrix obtained in part (i) is same as that given in Ex. 3.2.11. Hence

part (ii) and (iii) are same as that given in Ex. 3.2.11.

- -
Review Questions

1. What is the difference between systeinatic codes and non systematic codes. .
\ * CI] - ?
2. What gre the functions of parity check matriv and generator matrix in linear block codes
How they are used lo generate code vectors front message block?
3. Whnf are Hamming codes ? What are their propertics ?

- apag s 3 s L .S:anml‘
4. Howr error correction and detection capabilities of block codes are related to minimunt di X

Hoir ?

What is the use of syndromes 7 Explain syndrome decoding. .

W

What are the hadamard and extenided block codes 7

-

Unsolved Exan’ip!cs

1. Consider a (6, 3) lincar code whose generator matrix fs

L Information Coding Techniques 3-55
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1,0 0.1 0 1
G=/01 01 10
(001011

i) Find al e codevectors
it) Find all hamming weights and distances

i) Find minimiom weight parity check matrix. iv) Draw the encoder circuit.
2. Consider a (7, 4) linear block code whose Senerator matrix is given below
T 1000:101 '
0100:111
“looto:1o &
0001:011 .
a) Find all code vectors of Hiis code.
b) Find the party check matrix of this code.
¢) Find minimum weight of this code,
3. The parity check bits of a (8, 4) block code are given by,
C=m+m+my
Cy =y +mmg+my
Cy=m +my+my
Co=m+my+my
Here my, my, my and my are the message bifs.
a) Find the generalor matrix-and parity check matrix for this code.
b) Find m:’nr"m::r}:rfwcighf of this code.
c) Find error defecting capabilities of this code,

3 Eycllc Codes

Cyclic codes are the subclass of linear block codes. Cyclic codes can be in
$ystematic or nonsystematic form. In systematic form, check bits are calculated
'Sepamtely and the code vector is X=(M:C) form..Here ‘M’ represents message bits
iand 'C" represents check bits.

.

3:3.1 Definition of Cyzlic Code

B A linear code is called cyclic code if every cyclic shift of the codevector produces
jome other codevector. This definition includes two fundamental properties of cyclic
codes. They are discussed next.

1332 Propertles of Cycllc Codes

As defined above, cyclic codes exhibit two fundzmental properties :
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1. Linearity and 2. Cydlic property F«-I reprc‘:mts MSB

3321 Linearity Property pe 1:-pru5r.-|‘h:- L6
p represents second bit from LSB side.

example let X; and X; are two codewords. Then, Why to represént codewords by a polynomial ?

X3 = X, ©X;
Here X3 is also a valid codeword. This property shows that cyclic code is also frl B
linear code. 42

Polynomial representation is used due to lollowing reasons :
i) These are algebraic codes. lence algebraic operations sucn as addition,
multiplication, division, subtraction etc. becomes very simple.
3.3.2.2 Cyclic Propert i) Positions of the bits are represented with the help of powers Gl oy
¥ perty t b |
very cyclic shift of the valid code vector produces another wvalid C(‘)dl.w:ct
Because of this property, the name ‘cyclic’ is given. Consider an n-bit codevector as

polynur_ﬂiul‘

-

3.3.4 Generation of Codevectors in Nonsystematic Form
'l,lh.'ll i Gl Lv

shown below : ¢
X = G . ,-;i 3 Let M ={ny.r, nia, oo, migh be 'K bits of message wveclor.
rrbed 1%} (3'3'1)&{"‘- TLP{LSLlllLd b) the polynomial as,
Here x,., %-2,.... X1, %o et i ,
1 Xz 1,%0 efc. represent individual-bits of the codevector X', Let ug {f- . M)y = mpaptt e pt e g p e b

shift the above codevector cyclically to left side. i.e., "";‘{ i k

y . - : "; Let X (p) represent the codeword polynomial. I is given as,

One cyclic shift of X gives, X' =(X,-2, Xn-3, s X1, %0, Xu1) - (33.2) ¥ { wwwww NN

= | X(p) = M(p)C(p) !' (i

Here observe that every bit is shifted to left by one position. Previously x,. wasf“\-?
..'\zlbd but after left cyclic shift it is at LSB position. Here the new code vector is X' andl-:é .
it is valid codevector. One more cyclic shift yields another codevector X", i.e., il

Here G(p) is the generating polynomiat of degree 'q’. For an (a0 k) cveiic cade,
g =1~k represent the aumber of parity biis. The generating polvicsdal v onas,

X" o= (Xumy o Xucd gy X1, Xg, Xa-1, Xu-2 ) w (3.3.3) ;‘ G(p) = pt+gqap? T el EE I I
Here observe that x,-3 is now at MSB position and x,-; is at LSB position, _"_;' Here g4, §y-20 - o &1 are the parily bits
) . . ) . e are the other message . ty Do et pespoding
3.3.3 Representation of Codewords by a Polynomial & If My My My .oele are the other message vectons, fhen B nofrespann i
. ! g codevectors can be calculated as,
The codewords can be represented by a polynomial. ; M ( '
N X = Gy
For example, consider the n-bit codeword, (P) v ) (( }
. . . Xa(p) = Ma(p)G(p)
X = (xn—lrx:lvz,‘"“":xlfxﬂ) . : ‘ X (( ) M ( )‘ 1 ! 4
. . a(p) = Mz {(p)C(p) and soon e
This codeword can be represenlcd by a polynomial of degree less than or equal lo * : : ( )‘,( ), .
(n~1). Le, g _ All the above codevectors Xy, X3, 2a ... are in nonsystematis oo 0 ORI
S WIS, S cyclic prupirty. Note the generator polynomial Gp renvine WA
4 = -1 =2 . . . B E W
X)) = Xpa p" ' X U AW P X . {3.34) : co/ievectors,
Here X(p} is the polynomial of degree (i -1). ; "-::\ - ol of g (3 '
N Example 3.3.1 1 The generator polynomial of @ (7, @} cyclic cone s Lipp =0 o f L

is the arbi ia i L . . .
P sbitrary variable of the polynomial. Eund all the code vectors for the code in nonsystematic form.

The power of 'p’ represent the positions of the code word bits. ie., 7 Solution : Here n=7and k =4 therefore g=n—-k=3
- : - o There will be total 2% =24 =16 messaze vectors of 7 bils

‘ message vector as,

LR

% 3 Enwrdantid
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Then the

and give

To obtain non-system

The non systematic cyclic code 15 £

Note

corresponaing

This is th
cvelic code vector.
procedure. Table 3.3.1 lis

M o= (my mym

message polynon

M)
Mip)

n generator poly

Gp)

mg)=(0 101)
al will be (k=4 in equation

= mypd+un p2 +mp+ o

= pt+l
momial is,

= pi+p+l]

atic code vectors
iven by equation (3.3.6) as.

X(py = M(p) G
|

that the

degree

).
= p’ +pd +p? +p?ap+l
= piapl 4 pd +p?aptl
= piH(l® Np3 +ptap+l
= pSpt rp+l

op® b p? +0pt op? wptep

of above polynnmiﬂ! i

to above polynomial is,

X o= (_\‘;, Xg Xy X3 X2 xn XD)

H

o code vector for message vector
Similarly other code ve
is the codevectors in nonsystema

- (0100111)
0101, Th

is

ctors can be obtained
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(3.3.5))

... (3.3.9)

... (3310

?3 .}4}'?;-{‘ ‘f\
(@

Lo

(since (1 ® 1p? =0p? =0)

+1
n-1=6 The code vector

is code vector is non systern

tic form.

Message Dits Nonsystematic code vectors
M = mMaq My My My X=xsx5x4x3x,x1xu
—_I—_U‘OOO-—__“— goo0000G0
o 0 0t gao 1011
oo 10 0010110
oo 11 p 0111071
T AT R
noy o0 gt 1100
o101 o100 111
N .

atic

using the same

)

=]

A
Rkl

et
&

it

e
-‘?.P‘-"'r (Y

o

=

i &

" Information Coding Technlques

T o110
a' o 1 1 1 6110001
8 I 1000 1011000
10 100 1 10100 11
1 1010 1001110
12 10 11 100010 1
- 13 1100 . t110100
14 i10 1 1111111 s
15 i1 10 1100010 b
16 11 11 1101001 /
,_//

Table 3.3.1 Code vectors of a (7, 4) cyclic code for d(p) =pl+pel

To check whether cyclic property is satisfied :
which is given in above table as,

Let us consider codevector Xg

Xy = (1011000)
Let us shift this codevector cyclicall
0110001

X' =

From table, observe that

y to left side by 1 bit position. Then we get,

X' = Xs =(0110001)

Thus cyclic shift_of-X3 produces Xg.

also.

This can be varified for other codevectors

3.3.5 Generation of Codevectors in Systematic Form

Now let us study systematic cyclic code
' X = (k message bits : (n~k) check bits)

= (Mpay Pz oo 1Y 0 2Cqt g2 e co)

s. The systematic form of the block code is,
. (3.3.11)

. (33.12)

Here the check bits formia polynoinial as,
C(p) = Cg-1 p'l"l +€g-2 pq-i +...01 P'.‘H'o

_ The check bit polynomial is obtained by, '

. (3.3.13)

ol ()} = rem [,

p? M (r)
G (p)

)

. (33.14)




3-61 Error CO!HH;I Cading
-_._,__&._h._,_,_m_._.h_____.. e Y

FER i) Co N gy

)y One g i J}' ;'- Hﬂ'*"-;,- ' [;;)--'

1 Exampfe 3.3.:

2 The Seneratgy Polynanyiny
Clp)=p3 tP+1

i
} LE. “II,-I _4_),)-" " ;JE
Madg.2 e S I m
Additiepn ™ T e “..w.:. -
, . \H'“‘\.x 0 v O wp2y Op + 0
9% a (7 4) el Coe S
i P.Il\:li“h".'f
5 ainder Polynomiz) s piy Cp a0 in the divig
Find a4 the cod, 5 ] for, "
od, VeClors for the code in Systematic for, (herelore equation (3.3.14) can be weriite,
Solution - Here n<y,q =4 therefope F=tt~k=3 '
There iy be tota) ok =24 =14 message veetors of 7 bi, each,
messy &2 vector as,

U oy g i) by
w4,
= (ma My 0ty
Then the me

P -
- 03 M) e '
(‘-(p) = e /V[I_‘_,_‘ ._“_’_{:{_L |'l = }J‘E + Ul;? + ()
I_ &) 7} ] —
With g = 3 0 Polynona) Cp) from Cqtiition 33,13 is,
=(0101 \ -
o) ( ) C(‘p) = oapl oy O+ 0y
Ssage Polynomia) will be (k=4 in €quatipn (3.3.5)), 3 12 +0p 4 0
' Thus 2P+ g to = p?, i
M(p)y = my p3 iy p2? P+ oy, Therefore heck bits an -
terefore the ¢ ec are
Mp) = 2 +1
A ?; C = o=y -
A oriven Cherator ynomis] is, . P2ty .
( ’ o The code Vector is wwritten I system, forim g sven by cqualion (13 5oy Le,
Glp) = 7 \ -
P, P2 p X = (mk_l.»n‘._:,_.m;mgch_;r:.f\.z---Crr;'.-;)
Te Obtain rq M . - '
o ;J , Ef()) g In s exaniplg A= (™30, Big tereye,y 2 M1o1:1¢9 0 -
THICE 9 =3, g, will be, I T
’ This is the eauired eyclic co Vectors [p Systematic form, 14,,. Other coun . i1
77 ! = -
PTM(p) F M(,?J} can be obtaingd sing the samo Peocedur, -
: 37,2 .
T PPt 1) Tible 3.3 lisds o) thes S¥stemate T ol
| = p° + g3 {for message veeygy of G1uyy T "*““““““““‘““‘“‘“*i- ‘“““*-“-‘"H‘ B | -,
I Sr, ' Musbage bits { System;mc code vectary
= PS4 Opi tp3 s gp2 +0p 4
and Glp) = p3 +p ] [ Mo ] M, Moy my oyl T3 My e my ¢, %5 -
. T2 ._.T._._._.____A_“_n__q____,____.. —
:;}3+0p?+p+1 1 I b o oy 00 ¢ g GO
T Perform the diw'sion _f’j_,__ﬂ/{_(_gé 0o oo, LRI
S(p) L B it / )
?"ve now haye 7 M) and Gy, Now Jep petform i, drvision to fing femaingde, 0o o1y 0o
BHE divfsi'on_ -_._h,_‘_'_._.__._.___.__._f____ - .
Ot 00 ¢,
01 o 4 | ot -
01 1 0 o4,
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9 10 00 101

10 0 0

‘1110100

11 11 1111111[

7, 4 cyclic code for Gipy=p> +P* 1 ‘
generating po'lynomml

S
Table 3.3.2 Code vectors of a
We have obtained nonsystematic codevectors for the same
in Fx. 3.3.1. They are listed in table 3.3.1. /‘/’_
ey Example 3.3.3 An ‘n’ digit code polynominl X(p)is obtaified as,
X(p) = c(r) +plr=t) M(p) o
- N ,
where M (1) represents message polynomial for k digit data and C(p) is fr;m(m; i
polynomial obtained by dividing p(ﬂ*)M(p) by proper gcm.'rafor p.::-fynnmu:r ”e;}n,cmr
modulo-2 sense. Prove that X (p) represents a systematic cyclic code if G{p) is th

of p" +1 in modulo-2 sense.
() To prove that G(p) must be a

deword, X =(Xu-1,%n-2 peeenX1,X0)
) and it can be expressed as,

factor of p™1 ¢

Solution 3 |
polynominl of this codeword will

Consider the <0

be of degree less than or equal to (1 -1 ‘ .
X(p) = =t pt 4+ Xn2 pr? 4421 p X0 o (33
Now let us shift the codevector "X cyclically to left side. We get,
. X = (xn—lfxn-«B ;---xllxﬂx-rn—'l)
The polyﬁomial for this codevector can be written as,

n-2 +...—!~1£~1}’72 + Xpp + Xn-1

]

X'(p) = *n-2 p"‘1:+ Xn-3 P
Multiplying the polynomial of equation 3.3.17 by Pr -
. pX(p) = X1 p" + Xn-2 prl n pt +x0p
Let us add above ‘equation and equation 3.3.18 as per mod-2 rul
pX(p)+X (1) = Xna P +(Xn-2 @ Xn-2) P w0 ® rx)rf?_:r(xo @ xo) p+ -t

es. We get,

-
v

|74

.. (3318)
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We know that in mod-2 addition, if both the ‘bits are same, then result is zero. ie.
Yooy ® 1,2 =0, 1 &@xy =0 and s0 on. Then above equaiion becomes,
pX(p)+X'(p) = Xaa P Xun
e, pX(M)+X'(P) = X (p"+1)

We know that by mod-2 addition rules, there is no
js if x®y=2z then x=y®z or ¥ =yv® = This is because mod-2 addition ancl

1]

it

addition and subtraction. That

subtraction is same operation. Applying this rule to above equation,

X'(p) = p,\’(p)(‘r)x,,_{(;r" 4-1) , ‘ L (3.3.19)

is obtained with the hé-i-p af X(r) and
k. It is expréssed as,

. (3.3.20)

Thus new codevector polynomial X'(p)
(p" + I). The generator polynomial G(p) is of the degree qg=1-
G(p) = p1+8q prl 4t grp+l \

Let M(p) be the message vector polynomial of degree (k~1). It is !cxpressed as,
Mp) = nty prt +mia pE2 . p g L3321
Then the product of generating polynomial and message polynomial gives

codevector i.e.,
X(py = M(p) Gp) ... (3.322)

Important conclusions :

1. Here note that G{p) becomes a factor of X{p).

2. Similarly X’(p) of equation (3.3.19) can be generated with the help of G(p) and
some other message vector.

3. Under this condifion G(p) will be a factor of X" (p) also.

4. Then in equation (3.3.19) observe that G(p} is factor of X(p) as well as X'(p).
.Both X(p) and X'(p) are valid cyclic codevectors. For above statements to be
true, G(p) must be a factor of (r" +1) also.

If G(p) is a factor of (p" +l), then X'(p) will 'be a polynomial of degree less
than ‘n' and it will satisfy cyclic shift property. If G(p) is not a factor of
(p" +1), then X'(p) will not be valid cyclic codevector.
() To prove that X(p) = C{p)+ phn 8 M(p)
The systematic form of a codevector is given as,
X = (k' message bits |'q’ check bits)
Here q = n -k are number of check bits. Above codevector can also be written as,

X = (m;_nm—_: ...l'n]l'l'fu[f,-l,__wq_: ...CgL‘u)
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above code veetor €an be written in polynomial form as,
X(p) = Pe_ 1PV by g pne2 oo my -k + mgpnk
PPty aprk2 iy + e

The

T {3.3.23)_.
We know that » values of 'n' and ' in above;

equation we get,

~k=gor n=k+q. Putting those
X(p) = M pk+a-1 thg_gpkte-z FoctmpItt pimgpg

' Fogp-t FCqoapt=2 4

Let's marrenge the above

X{p) = o ‘J‘[m;-_]p*‘l

equation as,

fay_gpk-2 +...+m;p+m0}+cq_1p?“1 +Cqpi=2 toltap e

In the abave equation Hig g pk-1 + My pt-? Fomptmg = M(p). Therefore
above equation becomes, T
X(p) = ps Mp)+cp_po FCy_api-? tetOp ey - (3.3.25)
Let’s define the check bit polynomial of check bits - -
C = (cg-1c5o2 .€16p) as _ - )
Clp) = Cooypit 4 Cqoz pi-2 ot ap e - (3.3.26) .
The above Cquation is check bit polynomial of degree less than q- From above -

cguation (3.3.25) we obtain, . .

X(p) = po M(p) + C(p) - (3.3.27)

The above equation gives a code word polynornial in Systematic form. For thig

veclor to be cyclic, then the above equation should be same as equation (3.3.22),
can equate above equation and equation (3.3.22) ..

code
Thus for a cyelic code vector we
M) CE) = M) Gy

£MEp) o Clp)

T @
Glp) T Gy )

the form of 2@ =1 We know that med-2 addition and
Z@f={ then we can write 2=t @& | or t=z& ] or
as such. Mod—2 additioir and
we can - write above equation ag, '

The ahove equation has
sublraction Cperation is same je. if
OIS I=0 Thus there s np mod-2 subtraction
Same result. With these conclusions

subtracton vields

P M(p) CEE( O
e 7) D L e (3.3.28
oy~ = MO (33.2)

This equation has the form of

Niumerator . Remainder ¢ :
Domoi———"= Quoticut & ' —=4+
Dentontinator

——— 1 [or example
Denominator | p 3

S

Lilpa

v (3324)

) jj{}ﬂlus equation (3.3.27)

: % equation (3.3.29).

¥ kxa That means there are '} Fows and 'i' columns,

[ R Example 3.3.4 .

'_ . Solution ;

#} - Since
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ubtbained ., remamder e oy iy eI

E::}'}N!h the ghock Lit Pulynomea! .

Clp) = rem lr E_;:%g{‘f i JI!I )

Cp) is check bit polytomiai iy Systemnatic code
{'}M(p} is message bit polynomial,

and. G (p) is generating polynomial, whici i the factor of p»

represents the cyclic code in Systematic tare, e,
e X() = priip)cip) e
; :‘-I—.fr.»re g =n-k hence above equation becomes,
' XY = C(p)+ptiim o E
Observe that this equation is same as g given equation. i e eea b

'3.3.6 Generator and Parity Check Matrices of Cyclic Codes

1361 Nonsystematic For of Generator Matrix
4 Since eyclie Codes are subdlass of jinea Dlack
matrices can also be defined for avelic codes, 7he

codes, Lenerator
generator matyin |y,
Let the BUNeral o

aried b Gy
e uf
HID I R "\.r'".l.’ fl‘.-L'

given by cquation (3.3.7) as,

Glf})) = p?..-ﬁgu"'”,'f T T j-‘ +1 P
Multipiy both the sides Of this Polvnongal by prie,

s
g-1p L

AP g

Lty '

PGy = pitagg

and i = (k- 1), (k-2),...,2,1,0
The above equation  gives' (hp
Polynomials. ‘fhis procedure will be clear after the

for

IsCussion of ey IERITRTS

POV Romi . e e / TR T

Oblain tii SONC L g

R S [

2 (7, 4) cyctic code,

Here n=7, k=4 ang 7=7-4=3 pi Gp)
PG = piedypiva gy

k-123,; (=3,21.0

~

will be,

for given G(y)
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Thus we will obtain four polynomials corresponding to 4 values of .. These four
pO]yﬂominls represent rowWs of generator matrix,
Forrowl : i=3 =p3 G(p) = pt+p° +p?
Forrow?2: i=2 = p2G() = ps +pt +p? . (33.34)
Forrow3: i=l = pG@)=P4+P3+P
i=0 = G(p)_r-p3+p2 +1

For row 4 :
) cyclic code the -

“kx ni. For this (7, 4
lynomials

e obtained four PO
in the following way.

(n, K) code is of size
Zding to four rows we hav
Let's write each polynomial

The generator matrix for
size will be 4 7. Correspot

given by . above equation.

Rowl =2 pC! G(p) — p6+p5 +0p‘1 +P3 +0p1 +0p+0
Row?2 = p* Gy = Op* +p® +pt +0p? +p? +0p+0 ... (3335)
Row 3 = pGlp) = op® +0p° +pt+p’ +0p? +p+0.—
Row 4 = Glp) = 0p5+(}p5+0p4+p3+p?+0p+1
Let's transform the above set of polynomials into a matrix of 4x7
po 5 pt P PR p°
Row 1[1 1 0 1.0 0 01 2
Gawy = Row2[0 1 1 0 1 0 0O ... (3336)
Row 3|0 O 1 1 0 1 0 ;
Row 410 g 0 1 1 0 1 Jyur

r matrix for given generator matrix.
olyriomials
polyrom fals.. .

This is the generato
Find out the possible generator p (7, 4) cyclic code. Ffr:dl"

mmy  Example 33.5:
nding to these generator

out the code vectors correspo
For this (7, 4) cyclic code,
k=7-4=3
tor polynornial is the factor of p
7 +1. The factorsof p™-+1-are

s@p®1)

Solution :
n=7, k=4 and g=n-
Wr': know that the genera

generator polynomial is the factor of p

p7 +1 - pon(pepr o)
generating poly'nomial is given by,

G(p) = pT+8q=1 ANLE ST 4} p+l

i
ne1, For this exampl

The valid

: Wy -ﬂ; v
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Illus tlle d E P 2 P }' < JT XA 2 =
egree nf thl_‘ )el 1CT ltlllg 01 nomi |1 Sho'l.lld be ¢ For th]s ox [ 3
. h p ¢l =0

erefore 12 vall gﬂllel ator PO yll(’lllitl S Iov P + 1wl LA A “+ 1 anc P -+
-of "I'l ' ” » ] d ] Is f 7 1 il be T ]
I 1

p+1 will not be .
enerator pol y generator polynomials. Since its degrec is ,
§ r polynomials for (7, 4) cyclic code are : s not g (ie 3). Thus

G] (P} =
Gg (p) =

l_m-)- Example 3.3.6 :
and find out the code vectors for (7, 4) cyclic code. -

. (33.38)
.. (3.339)

pt+pt+l
and p3 ip 1

Find e t i =
ont tie generator matrix corresponding te G (p) pd o+ 1
h ploep+

Solution : (i} To obtain generator matrix

Th
e rows of a generator matrix are given by p’ G(p). Here

PE-G(P): = P'.*“ +p“‘1 +p1'
and i=23210 .
Forrow1 : i=3.:> pI Gp) = pS+pl +p3 since k =1=3
Forrow?2: i=2 = PZ Glp) = PS +P3+P2 ]
Fo s
rrow3: i=l = pG(p) = pt4p?4p! {3340
Forrowd : i=0 = G(p):p‘3+p+1
#,  The above set of ials i
B S polynomials an i
(ie. kx m) as shown bclma\): ials is transformed into a generator matrix of size 47
£ .
pt p® pr op3 proptopt
L Rowl [1 0 1 1 0 0
G Row2 |0 1 0 1 1 0 0
Row3 {0 0 1 0 1 10
Rowd |0 0 0 10 1 1 Jl
4«7

I- e CYCIIC Cod ] 1 1 1 L .
! 2 15 a 5u bCl< 55 of II ok
I SHIC . ( near b]OCk (_()d[f, s (.ﬂdL‘ X \'fE,C[(TTS Citly l-L‘
MG - -
e ' 24 ])

Voo
v =

0 Oblaf!l tllﬂ codevectors
F{ re M .
€ 15 the i Ve 1 5 S’ e 1!“ Jore =4 s
lxk messa e ector @ nd G is ‘(']."19 ator n trix, Her l
< X N . Let's

Isider any 4 bLit message vector

M = (my mam f'nl,)z{l 001}
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The code vector corresponding to this message vector will be,.

1611000 prt . R )
0101100 Gy = el (L3 a5
X = MG=[1001 . ! Gp) )
[ Hoo10110
0001011 PE QGG R, ) and t=1,2,.. k e (33.40)
+ We know that if z=y @4 then 2 b V=t oor z ®f=p That is mod-2 addition and

svenbtracti ields same
esspblraction yie

i "" PHOR () = 0 (P)G () e (3347

ahoner cyuatinng Tefresents (1 oy ot

1010011 - . .
( ) results. Then we can write above equation as,

{Note : Here we perform "matrix rultiplica

i

ition and additiong are performed

mod-2 rules. je. 1 D=0, 18 0=1, 0p1=3 and 0@ 0=0).
This code vector we have already obtained in example 3.3.1 and is list
3.3.1. This code vector is in non systematic form. Also observe that generat

As we have stated in equation (3.343) the
ystematic generator matrix, The above procedure is illustrated i jon, examplo,

.3.6.3 Parity Check Matrix
* Once the gencrator matrix in systematic form is obtaines then parity check matiiy
‘can be obtained as per the procedure discussed in ast seclion. Mex) erinple tlusteale

" this.

alsoin
abiained .

Nole : Here note that fenerator matrix is n

check matrix cannot be vbtained using direct method,
3.3.6.2 Systematic Form of Generator Matrix wd Example 3.3.7 1 Find o the gerieritor atey JUT i sgsteniatn (730 Gt
The systematic form of generator matrix is given by equation {3.3.6) as, _ } . o _ _
) w4 Gip)=pd 2 p+t Also Jind out i baniy check mairia (hovsTice-2003, 4 Mot
G = [I:p, o (3342) IF ! ,
[ ko qh"" ¢ 4 3 Solution : (D) To oblain generator polynomial
The 1% row of this matrix wil be represented in the polynomial form ‘as, o The t" row of generator matrix 4 given by equation (3.3.45) 1y
f 0w of G = pu-t 4 Re(p)  where t=1,2,3, .. & v (3343 1 PR () = Q06 ) and  ts1,2, %
- We are given that n=7,k=4dand gey-j-3
Let's divide puet by a generator matrix G (p). Then we can express the result of thjs ] fon-will b
division in terms of quotient and remainder, ie., : The above quation-will be,
net : , 1 . PR () = Qy () (p B TE B B g ~
' = Quotient 4 Remainder (3.3.44) - :
Gy ~ G (p) e o 4 With £ =1, the above cqualion becones,
' - PEYROp) = Q) p)ipt 4 Pl ER
Here remainder will be 4 olynomial of degree less than 'q, since degree of Glpyis |
T The doo ) oy 5 gree.of - 4 To obtain R, (o) and @, (P) tor 15 row
9. the degree of quotient wil] depend upon value of £. _ N '
o _ .~ The RHS or LK3 of this equation Tapresents 19 row of syatorma
Lets reprogent Remainder = R (5} ' mnatrix. We have ter find L (pr Tiom Sileation {3.3.45) we know thae T T vt
and Quotient = 2 (p) b}t dividing p"t by G Here ubtan 0 (3 we Juve g v, by
C(p]a:;;ai‘ +p+1l
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Information Coding Techniq ] This is the required generatcr matrix in systematic form. The code vector can be
p? +p+1 e Quoticnt “¢ obtained from equation (3.3.4) as
p}ep+1)pe 040 ' X'= MG
pé+pi+p 1. Let's take any 4 bit message vector and find corresponding code vector, Let's take
e @ '
: M = (nt3 my m =(11
Denotes < . L . . _ ( 3 M2y mg)=(11 0 g)
mod-2 addition O+p*+p?+0 +0 T oo o1 g 1 "
plA0 +ptap 010071 1,4
R X = MG=[11 00 .
y ©® & @ o — [ JOUIUI]O!
PP Hp2+p+0 00 01 01 4
3 +p+1 :
P"O@p@ =1 10001 g §
® @ 5 . ) : . . '
T(—Rcmaindcr * ) .T?us code vector is obtained by pe.rformmg mat:_'lx I‘nu[lip]‘i(‘uijon and  mod-2
? & additions. Observe that the same Systematic code vector is listed in table 3.3.2,
Here Qilp) = p+p+1 e s f;, Using the same procedure other code vectors can be obtaiped.
144
= p? 41 1 . :
and Re(p) = p?+ %5 1) To obtain parity check matrix (H
Putting those values in equation (3.3.49) we get, " ) We know th o P( )
pe+piHl = (2 +p+1)(pd +p+1) P O“t’. "(236) = [ hg),
* . st row -from equation (3.3,
The RHS or LHS (actually both are same) of the above equatior: represents 1 1o 4
he R or L
of generator matrix i.e.

The P submatrix can be obtained from equ
10 1
111
110
011 .

' .o (3330

1*F row polynomial = pb4p2 +1 ;

P =

. ials F:

ii) Other row polynomia e
Using the same procedure as discussed above, other row polynomia

and they are given below

3
=2= fal = p5 +p2 +p+1
t=2=> 2" row polynomial = p’+pi+p

The Parity check m
t=3= 3" row polynomial = p* +p2 +p

atrix is given by equation (3.3.11)
H = [pr.
[ 73] e

PT s the transpose of p

t=4=> 4% row polynomial = p3 +p +1

submatrix and
iif) Conversion of row polynomials into matrix

. béiﬂ i _ Iy is the gx qidentity matrix,
The above equation can be transformed into generator matrix as shown 3 By taking transpose of p submatrix of equation (3.3
'ps p> plipd  p2 pl po be, 111 0:1 9 g
Row1 100 o 1 0 1 H:UI]I:{J]U
G = Row2 01 0 0 1 1 1 I]OI:UDIB"?
Row3 10 o 1 0 :1 1 0 T T
Row4 0 0 0 1 -1 1), This is the requised parj
— e

3
ty check matrix for (7, 1) cyclic

ation (3.3.52) as

- {3.3.53)

as,

- he parity check inatrix

code in sysiematic form,
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3.3.7 Encoders for Cyclic Codes K
encoders for systematic cyclic codes. Fig. 3347
clic code. The symbols used 1o%8

In this section we will discuss the
shows the block diagram of a peneralized (v, k) oy

draw encoders are shown in Fig, 3.5.1. ;‘i

Al
R —— | . . . .

| Thesa are Nin-fops. They are ~nnpected in sequential order o maka
. ont ragisler The contents ¢f fhr shift register are shifled from input to
| outau! when clock pulse is applied.

4
& @ 1 . o
o Q_; They represent closed path if g = 1 and open path (no connection) it g = 0.
¥ T
o (Fp——e Thase symbols represent mad-2 addition
ot

Fig. 3.3.1 Various symbols used in gncoder
fhe feedback switch is first closed. The output switch is connected

Operation :
it registers are initialized to all zero state. The k message bits

message input. All the shi
are shifted to the transmitter as well as shifted into the registers.
the registers contain "¢’ check bits. The fredback

After the shift of & mesage Dbits
ic connected to check bits position. With the

awiteh is now opened and output switch
lits are then shifted to the transmitter.

agram  performs the division operatiom and
This remainder is stored in the shift regster

every shitt, the choeck
Here we observe that the block di
generates the remainder (Le. check bits).

after all message bits are shifted out.

'rq-!@m

Check
bils Output . ,
" switch
“p—r-Ta fransmitter

mt
LY SR e
wiessage bils iessage
Input bils to a

Fig. 3.3.2 Encoder for systematic (n, k) eyellc code
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"1)‘% Examyle 3348 Uﬂ.’.‘-fi}_‘-‘? the  enesler ‘Fﬁf the (7, 1) l:fi‘f-'”{: coile grensraled i
sty ) e oy ' ’
Giprap! vyl and verifyy i1s gperdtion for any pressage vector.

{(MNov/Dec.-2003, 4 Madks)

gotution :  The generator polynmnial is,
Gp) = p*+0pTap+l
and Gp) = pP+gapt raaptl
On comparison of the two equation we gbtain,
¢ = 1 and ga= 0
q = n—k=7-~4=3 ,
m of Fig. 3.3.2 will be as shown in Pig. 3.3.3 belowr.

and

With these values the block diagra

s
i O e e el e R
Faedbinck |
switci |
gy« 0 - |
P ay=1

no connection

L D e Dy

| Chack
| b Dharpal
LSe
s ' -
o e T transritier

- LAY S h-u).
Message Messuge
bits hits

Fig. 3.3.3 Encoder for (7, 4} cyclic code for Gr=pI+p+

Ginen = 3, there ane °F flivs-Hops in shift register tor hold check bits vy 2z anton.
Since g2 =0, ity link is not connected. gy =3, hence its link is connoctoad, Mow ies
verily the operation of this cncoder for message vector Mo(iy iy #hy el sl 14U,
Table 1.3.3 shows the conwnts of <hift rogisters before and after shifts.

f Jast message bit the registers hit enstpuds are

Pable (3.3.3) shows that at the om0
=0 The teedboeck switch 05 opened and output swil b

woare then shifted to the transmitter. The choeck bits

rp =0, rf =1and ro Chaeed o

check bits position. The check bi
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. Information Coding : 3.3.8 Syndrome Decoding for Cyclic Codes
el input Register bit inputs before shift Register bit outputs aftar shift In cydic codes™also during iransmission SOME errors  may occur. Syndrome
, "‘ET,‘?“ - decodmg can be used to correct those errors, Let's Iepresent the received code vector
i o v : .
" . [ =r w=rfy | B | rET®nem = rnpom by Y. If'E Tepresents an error vector then the correct code vector can be obtained as,
2772 : . .
: - 0 o L% X =Y®E {from equation 3.3.29) < {3.3.54)
0 ‘-
- | o "0 ° Or we can write the above equation as,
0 0 0 |.o000@1=1 o@1=1 li Y = XoF - (3.3.55)
| 0/ re — - —-/ ' We.can write the above equation since it is mod-2 addition,
- J : =| 0d1= '
1 K ; ' 1 teoe1 ‘ j o In the polynomial form we can write the above equation as,
/ g r 0 191@0=0 T@0=1 Yp) = X(p)+Ep) YL @Ease
0 T 0 1 Since X(p) = M(p)G(p)  the above ciquation will be,
: |
— ) . : 0 19001 l- Qwo=0" Y(p) = M(p)G{p)-i—E(p} : (3350
] E - . . o -
Let the received pol omial Y(p) be divided b Gip) i.e
. ; iti for input message M = (1100) - p.« m ® . Y Gl
Table 3.3.3 Shift register bils positions the shift ) = Quotient + Remainder (3358)
. . T —— = = e PP i T
hifted as ¢a =r3,¢; =r andeg =rg. The following table illustrates G(p) )
are shirted as Ca =712, . vector is,
operation of message and check bits. We knfl:W that the code ) ’ In the above equation if Y(p) = X(p) i.e. if it does not contain any error then,
X ={mygmymmpczcaco)=(1100010) X(p) . Remainder
‘ E@j = Quotient + ‘—"G—O—J)—-—
T Shilt register outputs |Feedback Output switch Transmitted.
i Shift clock | Message bitm — " Y ::’:}g; position " bits Sinde X(p) = M(p) G(p), Quotient will be equal to M (p} and remainder will be zero,
2 o message " This shows that if there is no error, then remainder will be zero. Here G(p) is factor of
) -
1 1 0 1 1 code vector polynomia_l. Let’s represent Qugotient by Q(p) and Remainder by R{p) then
1 ) 0 ; on message 1 €quation (3.3.58) becomes,
2 Yip) R{p)
0 = + o . (3.3.59
3 0 0 0 1 on message - - QW o) (3.3.59)
o 0 3 0 on message _ 0 3 Clearly R (p) will be the. polynomial of degree less than or equal to g -1. Multiply
4 : — o) ).;:toth sides of abpve equation by G (p) i.e.
off check bi ) Hi- e L i -
; - o 0 — EES YR = QG +R () .+ (3.3.60)
- ~ ; ~ 0 ~ 0 off chi_?‘"—k bits 102} On Comparing equation 3.3.57 and above equation 3.3.60 we obtain,
5 2 :
» / / o vy OGO OER) « Ep)GEorg)
- ro=ry fry=rg [y DR E(p)’ M G
'y e = @ GpoR
7 T Tomm | o i EP) = MEIGH000)60)0 kY
| 7 - 0 : The above equation has all mod-2 additions. Therefore

Table 3.3.4 Operation of (7, 4) cyclic code 'ancode!‘

The above
(1100).

i | essagels
table illustrated how the bits are transmitted when mpu{m 3

subtraction and addition is
Sdme, .

E() = IM(p)+pr)}G(pJ+R(p) . (361
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message vector and generator polynomial, an
on remainder R. For every rematitder "R there
[ the remainder vector Roas

This equation shows that for a fixed
error pattern or error vector 'E depends

will be specific error vector. Therefore we can cal

syndrome vector 'S, or R (p} =S (p). Therefore equation (3.3.59) will be,
5(p) .. (3362)

YE) - oy 2
G Q&

sies the syndrome vector is ohtained by

dividing received vector Y (p) by G(p),

... (3.3.62(a))

13.8.1 Block Diagram of Syndrome Calculator

Fig. 3.34 shows the g(meralizec‘i block diagram of a syndrome calculator.

e
|

epceived

.-—-;-o-—_ro—u——b-
2 Quput

syndrome

Fig. 3.3.4 Computation of syndrome for an tn, k) cyclic code

In above figure observe in figure that there are " stage shift register to generate 7
bit syndrome vector. The operations as follows -

Initially all the shift register contents are 2€ro and the switch is closed in position
| bit by bit into the shift register. The contents of flip
flops keep on changing according to input bits of Y and values of g1,82 €tc. After all
the bits of Y are shifted, the 'q' flip-flops of shift register contains the g - bit syndrome
vector, The switch is then closed to position 2 and clocks are applied to the shift
ut is a syndrome vector §=(Sqmts 852200051 s0)

for (7, & cyclic Hamming code

i The regcived vector Y is shiftec

regrister. The outp

Lpane CRICHIGIOT

Lan Loamp'e 3.3.9 0 Diesigh W S
generated by the polynomial G (1) =p? 4 p+1 Calavlate the syndrome for Y = (1001
100 (Nov./Dec.-2003, 4 Marks)
Solution @ For the given code n=7,k=4,q=1"- k=7-4=3
The given generatar pu_‘}]}-’]t(nrnial is, —

G(,“) = :.‘J 4.0{}2 +p+l

i

{ e N, e 3 gt
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and G = 1"" vy j"' sy p+l generalized equation.

(it st af e abave two cquations weo obtain,

v, = 1oand w0

A

With these values thee block diagram of a syndrome caleuiator for (7, 4) evelic code

will be as shownan Fiv. 335 .

S I

g,=1 g,=0

no connection
1

_____ B S oy T oy B ot

Ingrut wectof Synwiroen
Y . ! L
oulput

Fig. 3.3.5 Block diagram of a syndroms calcutator for (7, 4} cyclic code witl
G(p)=p*+p+1

Qperation and explanation

‘The switeh ts kept in position { until all the *7° bits of rocpived vector Yoare shitled

gister. The flip-flops of the shift register contain syndrome viclor when
ther closed to position 7 and clock pulses are
The fedlossiner tabde

10011

jisto the shufl e
all bits of 'Y are shifted. The switch is
gister. This gives syndrome vector at the oulpon

applied to shift re
his syndrome calculator far received vecter Y o= (

illustrates the operation of t
0 1). The table shows the contents of flip-flops with every shift.

the end of last shift the  register

contenls o are

The table shows that at

(50 %1 s2)={110).

snift | Recelvetbvector ie. bits of ¥ r PM'"-- -

e rr———r I .

- - I
- _1_.._..4_. e " == ,r

o e
$ ___,___._-.D_,._.__ e P

4 1

- ]

GH‘- 0 T

7 1 Syndroma ]

Table 3.3.5 Calculation of syndrome for Y = (1001401)

|

L] -
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Hence. the calculated syndrome is,
;o S = (s25 50)=(011)

3.3.9 Decoder for Cyclic Codes

is detected for that
Once the syndrome is caleulated, then an error p‘atrcm il‘smfvccmry e
e 5 3 : o l
5 C =ctor is added to the
articular syndrome. When this error ve ; to rece! e rfored
o byt d code vector at the output. This decoding operation ca P ;
- — recter :
gives corre ‘ecto
by the scheme shown in Fig. 3.3.6.

. Input
i Feedback connections ™

=
I—»' {Sidi}mg register ,—
bYy T4y s

Error patlern dt;tec}or . o
{combinatorial logic circuit}

N
fAN)
=

o
5
S, %S, o2 P
o~ 0—-—{ Buffer regisler Corrected
Received veclor
veclor input

Fig. 3.3.6 Generalized block diagram. of decoder for cyclic codes

Jperation of the decoder

5 i hé received
The switches named S, are opened and S, are closed. The bits of the

i ifted into the
ector Y are shifted into the buffer register as well’as they are; shif ihme—d e
::Ldrome calculator. When all the 'n' bits of the received \tectorh 1;::? ymrome
tler register and syndrome calculator the syndrome register ho 3
e Lo

clor. £ . A paniCUIM i ':
The syndrome vector is given to the error pattem_ deteCtOr ;\%
o 1 , 2Cifi 1 ’ 'Wi.tCheS S,',, are Opened and out '.‘!'“-.-'
nckrome thCCES a SPLCIICIC error, pattem. The s . i . S . ale.—. i
'j‘UJLd Ij-h{.’ Shifts ale thEn applied to thE fllp-ﬂops Of_ buffﬁrs iengt.el; (HIIOI Iegﬁm. -|‘:‘I
et y . i ’ tiern e
. - ¥ me register. rhe error pa 15 t]le 1 adde.d bitl.;& ;
(‘Nh](‘h hOJdS eITor Pﬂnl.m) and 5 I'ld_fo g I . K l‘l , ) ‘!i 2
E y l)il-t\ilﬁ ” 2 ('L:L'I.?i\l’cd vector (Wi'llch 15 Stl}“‘.‘d m utter rLo . i
i 1 1) the, 2er SIer l]l.i‘ outpul 15 the

B
corrected error free vector.

..., 3.3.10 Advantages--and_lpisadvan':agescf Cyclic Codes

\*‘*“i’“’ﬁwww T
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As we have seen that cy

clic codes are the subclass of lines
some advantages over non

ar block codes, they have
cyelic block codes ag given below -

Ad@nlagus :

I) The error correcting and decoding methods of cyclic codes
Lasy to implement. These methods eliminate the storage
table decoding, Therefore the codes becomes Powerful and ¢

2rThe encoders and decoders fo
codes.

are simpler and
needed for lookup
{ficient.

T cyclic codes are simpler compared to noncyclic

i?' .
3) Cyclic codes also detect error burst that span many successive bitg, | ¥
4) Cyclic codes have well deﬁned'math'emarical
decoding schemes are Ppossible,

Inspite of these adwv,

structure, H,{inca: very efficient
i
antages cyclic codes also have some disadvantages.
Disadvantages :
1) The error de

tection in cyclic codes is simpler but error
complicated si

correction is ljttle
nce the combinational logic circuits in error detector are complex,
To avoid such com

plex circuits some special cy
discussed next.

clic codes are used which are

3.3.11 BCH Codes (Bose - Chaudhri - Hocquenghem Codes)

BCH codes are most extensive and p
decoding of BCH codg;,-is“c‘bmpararively
" {where t< 2m1) there exists a BCH code witl

owerful error correcting cyclic codes. The
&)

simpler. For any positi

ve integer mand;
1 following parameters

Fthcoder adds (n - k) redu

Block length : = gm-

Number of parity check bits : 1 — k < myt
Minimum distance b din :221+1 . .
The decoding schemes of BCH codes ca_n_.b_q\ _hhﬁlémcntcd on

f software implementation of decoding.__'_stchpme
ég{;y::amd to hardw:'i re implementation of other sgh_g'mes.'l

digital computer,
S they are quite flexible

Lhere ape oy symbols in the codeword. Each symbol containg m’ number of bits,
omally m = g jg taken,

The 't error correcting RS code has the following
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Block length tn=2" -1 symbols
k symbols

: 1~ k=2t symbols-

Message size
Parity check size
Minimum distance : d, = 2 +1 symbols.

Here observe that the minimum distance is grt“d!‘?t‘ than the number of parity

symbols. Hence this code'is maximum distance separable code. These codes provide
wide range of code rates, Efficient decoding techniques are available with RS codes.

3.3.13 Golay Codes
Golay code is the (23, 12) cyclic code whose generating polynomial is,

Glp) = pUap?+p7apbaps4p+l
This code has minimum distance of d g, = 7. This code can correct upto 3 errors,

but Golay code cannot be generalized to othet combinations of n and k.
3.3.14 Shortened Cyclic Codes —
for the (n, k} cyclic code, the generator polynomials are divisors of x* +1. The

very few divisors. Hence there are very few generator
polynomials available. This difficulty can be overcome by shortened cyclic codes. In
hortened cyclic codes, the last 'i' bits ocut of ‘n' bits of the codeword are padded with
transmitted. Only (n - i) bits of the codeword are
k) eyclic

polvnomial ¥ +1 has

ceros. This I bits are not
transmitted. The decoder pads 'i' zeros to the received codeword. Thus for (n,
code, (n = 4, k - 1) shortend cyclic code is generated. This code has all the
advantages of original (n, k) code. Its error detection and correction capabilities are

same as the original (n, k) eyelic code.

3.3.15 Burst E""Dﬁ, Correcting Codes

In the preceeding sections we discussed the codes which detect and correct errors
accurring independently at different bit positions. Burst errors occur as a cluster of
ervors. Cyclic and shortened codes can be used to detect rhe-se burst errors.

The burst of length q is defined as the vectors whose nonzero components are
confined to 'q' consecutive digit positions with nonzero first and last digits. For
example the vector x = [0 010111010100 0] has the burst of length 9. The
q-burst errr ¥0F . code is capable of correcting the bursts length q or less. The
foltowing theorem gives the number of parity bits required by burst error correcting

code :

The g-burst error correcting code must have at least 2q parity check digits i.e.,

n—k = 2q it . (3.3.63)

e N

Error Control Coding e

g fon A
3 ?,Icrq;ih upte '"2“}

Error Control Coding

11}1“5 we can say that the (n, k) bur-\! error correcting code can correct the bursts
Thin Decomes the upper bound on the burst error carrecting

) code e,

capabﬁﬂ‘y of {n,
n-k o
€ . (RN
1 2
' “The burst error correcting ef fficionc vois denoted by 2 It is given as,
2q o e
2 e {3.3.65)
-k
To detect the burst of length d, then the check bits must be,
n-k > d ' LA TAGY
Thus the check bits must be at least equal to d.
pop Bxample 3.3.10  Consider the (15, 9) cyclic code gmcmh d by
Glpy) = papd+pt 4pt 21
This code Tas a burst ervor corvecting alifity of o = 3. Find fwost eiear vty
efficieney of tis code.
Solution 1 The given code has ¢ = 13
It is (15, 9) code. Hence
n =15 k=9
The burst error correcling efficiency s given by equation (3.565) 1o,
.2
T on-k
Putting values in above equation ,
Tw 3
A =1 or 100%
15-9
Thus the burst error correcting efficiency of this code is 100%
3.3.16 Intzrlosving of Coded Data for Burst Error Corraction
- cffective swhico the crniwrs o B

T, el are

The block codes Lke-da. - 5 cpchuy,
charinel are statistically independent. For example, the errors i
gaussian noise {AWGN) channel are statistically independent. But there are some
channels which produce burst errors. For example the channels having moitipah
lelding. Because of multipath propagation the siynal fading ocours amd it v
at the receiver. This phenomena depends upun hime characteristics of the cha
burst error can be produced when the data is stored on magnetw
defeets in the magnelic material creates clurters of errors. 3t the blos

Additive white

bapues 4o
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optimally designed for statistically independent errors, then they cannot correct the‘. 3

burst errors. In this section we will see how interleaving of coded-data is used to
correct burst errors. .
A burst error of length ‘b” is a sequence of b-bit errors. A systematic (n,k) block is

. 1
capable of correcting the error bursts of length bsi(n—k}. The burst errors are

converted to statistically independent errors by interleaving the coded data. Then the
code designed for independent errors can be used to correct these errors.

Fig. 3.3.7 shows the block diagram of the system which uses the interleaving
technique to correct burst errors. The channel encoder encodes the data by some (nk)}
block code. The coded data thus has codewords of length “n’. This coded data from
the channel encoder is given to the block interleaver.

The block interleaver has ‘m’ rows and ‘n’ columns as shown in Fig. 3.3.7.

Dala | Channel Interleaver p—=| Modulatar
encoder

Channel

Deinalerleaver ‘*——[ Demodulalor

Output | channel
decoder

Fig. 3.3.7 Interleaving of coded data to correct burst errors

Thus the codeword bits are stored in the interleaver rowwise. The numbers

indicate the actual bit numbers as they come from encoder. The interleaver in the

i

above figure thus stores ‘m’ codewords of ‘n’ bits length, or total ‘mn’ bits. As shown
in Fig. 3.3.8, the bits are given to the modulator column wise. The modulator then
transmuts these bits on modulated carrier over the channel. At the receiver the
demodulator gets these bits back by demodulation and soft or hard decision decoding.
The deinterleaver then stores these bits in the samé format as shown in Fig. 3.3.8. Thl?
channel decoder then reads the bits row wise with one codeword of iength ‘n ‘ata

hmc Becau.,e of this recordmg of coded data by the interleaver, the error burst °f

correct these small bursts of length ‘b’, By mcreasmg ‘m’, the length of the bursts cﬂﬂ .&

- be further reduced. The block code which uses an mkerleaver of size mxn, is a

r

called as interleaved (mn, mk) block code.

Error Control Coding .

3-83 Error Control Coding

Read out bits to modulator

€ 5 min-5
o2 N
38 mn—i |
o g2 R
o g mie-3 T
el OwWs
h=] -2 [
[ =

- a ; |
o min—1 J

—

[.‘II’:I._ ot

Fig. 3.3.3 A data recording in the block interleaver
;;i In this section we. discussed a block interleaver. Anothes type of interleaver ealled

i convo!uhonai interleaver. Such convolutional interleavers or encoders are discussed i

.. the next secticn.
}

{. 7£3.3.17 Interlaced Codes for Burst and Random Err or Correction

«2; Definition of interlaced code

&
,: Consider an (n.%) block code. When 2
Interlaced then the code becomes (ln Uc) This code is called interlaced code.

A number of codewords of this code are

*.a
3

How an Interlacing takes place 7

Consider (15, 8) c:ode, Let its three code vectors be as follows -

“'__: X = (-1'1 2 X3 Xy 1)
3 Yy = (_Vl Y2 ¥3 ... yy 3115)
ZzZ = (Z; Z2 Z3 ... Z)4 215)

; If h S Vi i i
t £50 three Cl)dt? GC[’O[S are h‘ﬂnSIIl.lnl)d difCCfIy, tjl{_’ll we }_f(.’f th(? b'E’(’fllL‘l'lCL’ as
i
X4 X5 _';’lyz Y3 W14 Y15 21 Z3 23,214 215 {336?}

If v, {1”5] h ()f v are inter, ‘]!‘t:i ”1 I wWe tt nce
; md .
1 l its the t.hree COde eCfOrS re Inte red, e, Ve I 5 1hﬂ Seql]{:’ C

SR8y, 2, %, y, 2
e 2¥222%3 ¥3 23........, X148 Y14 Z1g X35 Y15 255 o (3.3.68)

. am is interlaced sequence. Here we have interlaced three codevectors, Hence
erefore the interlaced code will be of dimension, |

(k) = (3x15, 3x 8) = (45, 21)



P

,._ﬁ\bursrs, P ’
| A1 .different symbols. The length of the nonbinary

B
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bt Ao e AR e bt j}m ; W“— o
o el pprare A g : o Sy ‘* podee 7
Fow burst errors arve corvected by inlerlaced codes ? ﬁ& “"’ n 13-**_!’\"!3} CRC l-}"’*-‘-‘
} suitable for error detection because of bwva ronsois

Cansider the interlaced sequence of equation 3.3.68, Ly Cyelic codes are very much
: j Many combinations likely errors <an be detected with the heip of cvelic coddes,

XY #y X1g Y14 214 %15 Y18 295 ; '\iéﬁii)‘ rmplemcntation of encoding and error detection circliits is practicaliv possible.
; };@* Error detection capabilitics of binary {1, k) CRC codes
! i

43 {‘I’hc CRC codes are capable of detecting -
j) All error bursts of length {1 - k) or less.
..jf) Fraction of error bursts of length equal to (n~k+ 1).

iii) Fraction of error bursts of Tength greater |ha‘n (n ~k+ 1)

Tius is the burst
of 4 bits. These
bits are in error

During transmission of the interlaced sequence, a burst of error takes place as
%

55

shown above, Four successive bils are in error. At the receiver, when this sequence lsr?: o
ke

converted  to its noninterlaced natural form. That is  given byi{-;.---.. iv) All error combinations ol [_dnun 1y or less.

reconved, it 1S
v) If gencrator polynomial G has evern number of coefficients, than il crior

equation (3.3.67). It is shown below. b |
) ’é?- '.":'Ijatterns with odd number of errors can also be detected.
Xq4 %18 Y1E| 4.0 Y4 Y15 z,@q e 294 24 é;%rl Connronty used CRC codes
J :‘;ﬁf : “( Three commonly used CRC codes are given below
N nr‘.:E;r:r{_}t:t:]r;itl‘_\‘:lsslrlrtc:?;o — ; CRC -12: G (p') =1+p+ }'? 4 [y." Pt g p|2‘ with n—=k=12
_ TUCRC 16 G(p)=1apt ept et with n—-k=16
As shown above, the single burst of 4 digits is split into single or double errors. i CRC - ITU : G(p) =1 w It e pie with n-k=1f

All the above codes contain 1+ p as a prime factor. CRC-12 code 1s wmed for 650

Let the {n,k)} code corrects 't digits. Tl ".characters. CRC-16 and CRC-ITU are used for 8-bit characters.
combination of '€ bursts of length A or less. Applications : _
1) CRC codes are used mainly in ARQ systems for error detection

Error defecting amd corrccting capabilities of (lu,lk) code :
sen the interlaced code ¢an correct any * 7§

Why cyclic codes are more suitable for burst error correction 7

_— ! . . o . . . . "IV They are : sed in digital subscnber lines,
I the code (i, k) is cyclic, then its interlaced version (}krr,lk) is also cyciic. If G(p) * i '\-} Lhey are also used in diy tal subscnber lines
; - : N 5 . -

i <Y

MY is the generating pol nomiat i
Fis g poly

Coneatanated Block Codes

33, .
/'I .
Nonbinary codes
birary in pature

Till now we have discussed linear lock codes which aw

. Monbinary codes also cxis¥s, The nonbirery gzode consists of the
1. codewords. The individual elements of the codewaord are selectes!

q symbols, {0, 1, 2, ... g-1). Normally q=2*, means k information bits con generate '

codeword .is represented by N, The

odes are répresented by K. These K
ymbols by the nonbinary code.

is the generating polynomial of (n k) code, then C(p
of (}\rf,ik‘) code.

1124 shift -

ling and decoding of interlaced code is also possible usir

Therefore encod
registers. To obtain the decoder of interlaced code, each shift register stage ol (”’k) '

.+ ather connections. Becanse -of

apt of e tenoth

co the atphabet of

cyciie code is replaced with A stages without oh -
all the above reasons, 'cyclic codes are more suitaui wr detecting and correcting Lrrtu

48 Cyclic Redundancy Check (CRC) Codes ‘| “number of information symbols in nonbinary ¢
. . . 8 i mbols are encoded into "N’ number of s
Definition : A cyclic code which is used for error detection purpose only is called - ' information symbols ar

cyclic redundancy check {CRC) code.’ .

.
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Definition of concatenated block code
The concatenated code is obtained by combining two separatc codes. Normally one.
to form the combined concatenated code.

» is binary and other is nonbinary
oy . oncatenated block code.

Fig. 3.3.9 shows the block diagram of the system which uses ¢

| i ncatenaled
Outer h‘onb?nwy‘ lanar Co ?_.-.‘-t,v,
| encoder code encoder Modulalor Channel
Input [N, K) (n. k}
dafn V- bl d e
Inner ] QOuler |
Demodulalor decoder decoder Output
data

Fig. 3.3.9 A communication system which uses concatenated code

As shown in figure, the nonbinary code (N, K} is the outer code and binary code
(n. k) is the inner code. The codewords of the concatenated code are [nrlmeci by
subdividing the block of kK information bits into K groups. Each su/ch group is milc:J
symbol and it consists of k bits. The outer encoder encodes the K symboi:s into
symbols. The inner encoder encodes the k-bit symbol into n bit codeword. Thus the
final codeword is made up of N symbols of n bits each. This is called concatenated

block code of length Nn bits. This concatenated block code consists of Kk number of
The concatenated

information bits. This is equivalent to (Nn, Kk) binary code,
nsmitted over the

codewords then modulate some carrier in the modulator and tra "
channel. At the receiver side, the demodulator generates the transmitied codewor

i i : scisi e
back from the received signal. The inner decoder then makes hard decision on th

' bits are then converted to k information bits using

group of every n bits. These of the

minimum distance decoding. These k information bits represent one symbol
nonbinary outer code. The group of N such symbols is used by the o.u¥cr dec.oc.ief o
get K information symbols. The outer decoder also uses hard decision mm:fnw;;
distance decoding. Soft decision decoding can also be used for concatenated coces

the number of codewords are small.

Minimum distance and code rate

The minimum distance of the concatenated block code is @ min Dimin. Here ﬂ’mind:
the minimum diétance of the inner code and D, is the minimum distun.ce of .
outer code. Similarly the rate of the concatenated code is Kk/Na. This is equivalent

product of code rates of inncr code and outer code.

st s L

?.'

¢
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msp Example 3.3.17 :
gl =
systematic form,

This is (15, 11) block code. Hence,

The generator polynonmtial of a (15, 11) Hammiing code is given by

14+ x4, BDevelop encoder and syndronic  calculator Jor Hus code Hsing

Solution :

n = 15
k= 11
and = n-k=15-11=4
i} To.davelop encoder . :
The generator polynomial is, -
Glp) = T4p+pd =pi +0p3 +0p2 4p+1 ¥
and Glp) = pY+gap’ +gap +gip+1 \_

Comparing the above two equations,
£3 =0 g2=0 gy =1

Fig. 3.3.10 shows the generalized encoder for (n, k) cyclic code. Based on this, the
encoder of this example is shown in Fig. 3.3.10. In this figure observe that there are
four flip-flops to hold four check bits. Since g =1, its link But
&2 = g3 =0, hence their links are not connected.

Is connected.

0 o
Feedback
swilch _

“v\\

,\4/0_.— To transmider

Messago M Output et
bits switch

1g. 3.3.10 Encoder for cyclic code G(p) ="1+p + p4
ii) To develop syndrome calculator

The generalized syndrome calculator for (n, k) cyclic code is shown in Fig. 3.3.3.
The syndrome calculator for this example is shown based un Fig. 3.3.4. The syndrome
Caleulator is shown in Fig. 3.3.11.
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Rocewved ;

()l
futs __.h{.} LN

Fig. 3.3.11 Syndrome calculater for cyclic code G(p) =1+ p+p*

In the above figure observe that the links of g2 and g3 are not connected. Only S’t 4
is connected. The four flip-flops contain the four bit syndrome vector. The switchjs
i1l all the bits of the received vector are shifted into shift register-:is
{«. - <:). Then the fin-flops of the shift register contain 4-bit syndrome. The switch is
ten moved to peosition '2' to transmit the syndrome vector..~ ;

Pept i position 1t

wed  Example 3.3.12 1 Construct a systematic (7, 4) cyclic code wusing the generator :

colynemial g(x) = x* + v+ 1 What are the crror correcting capabilities of this code 7 ‘g .

Construet the decoding talle and for the recefved codeword 1101100, determine the i3]
e
teansnuted daia toond, !

J—ﬁﬁi .

Salution ;  For this ceden = 7, k=4 and q=3.

il To determine generator matrix (G}
The t row of the generator matrix is given as, {equation 3.3.47),
prt e R(p) = QiG(p)  and t=12 ek

We have obtained the generator matrix based on the above equation in example “#
3.3.5 for the same ‘generating polynomial. It is given by equation (3.3.52) as,

| mooo:101
_joroo:1 1l . (3.3.69)
}0010110 ;
ooo1:011

i} To construct codevectors
The codevector can be obtained from the generator matrix as,

X = MG

Irl s l'.'lkc' the messagre vector as M = 0101,

o 100010 1]
x:[mm]LJIGOI 11}
) “lo o 0110
|0001011_|

=[0101100
Thits the cherk bits are 100, We know that,
= [Ir i Prugl

Hence P submatrix can be obtained from equation 3.3.69 as,
1 01
L 11
11 0
01!

r =

i
B

Hence the check bits can be obtained by

C = MP
10 1]
_ 111
(G CaCal = Do mn mig mal 10
011

Cp. = mpdm @ ma
Cy = m @ ma @ g
Ca = mg @ my wmy
H

The check bits can he obtained for all ihe cucleveelorsg Wit

equ'lttons Table 8.3.2 lists all the systematic codevectors.
bits of Table 3.3.2 from above equahom

1) Error correcting capability
It is clear from Table 3.3.2 that,
Ao = [0} win = 3

Hence this code can-detect upto two errors and correct one error.

Then the codevector tor e

by tha help of ol

e witl pot the [l

3«89 Error Lon!ro. Coding
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iv) To obtain parity check matrix y
The parity check matrix is given as,
H = [PT: [}
P
HT = |, .,
I ‘.
Hence from equation (3.3.76) we can write above mairix as follows :
(1 01
111
110 .
HT =0 1 1 - (33.71)
1 00
¢ 1 o0 -
001

v} To obtain decoding table o P -
The decoding table can be easily prepared from HT. Fn.::r the blockdf:o e, :d h o s

of H' represents a syndrome and unique error pattern. This we have 1scu:.-‘.s < o

in linear block codes. Table 3.3.6 shows the error patterns and the syndrome v. .

Sr. Error veclor 'E' showing single bit error Syndrome vector Comments 1
No. patterns oo
1 f 0 J 0 0 o a 0 o 0 I v 0
2 I 1 ! ] ] 0 o 0 0 N 0 1 +~ 1% row of HT
3 } o.f i ’ ol o 0 0 0 1 1 1 « 2% ow of HT
4 ’ 0 J 0 I 1 0 0 0 0 1 1 0 « 3% row of HT
5 o J 0 ‘ o 1 o.] o 0 0 1 1 4™ row of HT
__;H 0_|I ] r Q 0 1 0 ¢ 1 ] 0 5% row of HT
[ o | o j[l; o 0 1 0 ol 14f 0 6™ row ofi k
) --B——--!T o ! o e { o o 1 0 0| t | 79w f"'i—.{' ;

Table 3.3.6 Decoding table
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vi) To decode 1 1 ¢ 1 100

Determine syndrome
Let the received codeword be,

Y=1[110110 0]
YR) = pleps+pdap2
The syndrome vector is given by equation (3.3.62).
e, .
Yip |
S(p) = rem | MY
o) = ron 2

We know that G(p) = p* +p+1. Hence lot us perform the division of above
equation. ¥{p) can be written as,

Y = pOpt 4 0pt e pdup2 1op g
And G(p) can be written as,
Glp) = p? +0p2 4p 41
The division is as shown below :
P +p?ape
PPH0p 4p mm:r—f}m
PO+ 0pS 4 pt 4 p3
& 6 o @
4 +p“ +0p3 4 p2
PS +0pd +p3 +p?
e & o 2]
pi+pd 40p? +0p
PUR0p apt 4y
& @ & &
P14p? 4p 4y
PP +0pap 41
@ @ & &

Remainder — 72 011 +1
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Thus the remainder is,
S(p)y = p?+0p+1
ie. $=[01]
The syndrome is non zero. Hence there is an ceror in the received ¢odeword.
Determtine error pattern for § =101 and correct the codeword
Table 3.355 indicates that there is error in the first bit, e,
E o= [1000000]
Hence correct codevector is,
X = ¥Y®BE
= (1101100)@®(1000000)
= [0101100]
Thus the transmitted codeword is X = ¢ 1 0 11 0 0 It s alsa one of the
codevector in Table 3.3 2

mws Example 3.3.13 1 Determine the encoded message for the following 8-hit data codes
wsing the jollowing CRC generating polyptamial P(x) = x4 + xF et
i) 11001100 ) 0l011111
Solution : Here G = x* +x% +xY hence q =4
_ = phapdap?
and length of rneésag__:r: hits is k = 8
K q=n-k or n=k+q
= 8+ 4 =12 bits.
iy Consider the first 8-bit data 11001100
Messag~ polvnomial will be,
M(p) = p7+pb+p® +p?
Lot us find pTM(p). Since q = 4,
piM(p) = pi(p? +pC+p? +p?)
= pll 4 pl® 4 p? 4 ph

ey
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PR
e let 4s divide ptM(p) by Gp). Then we get,

proaptep el
ptopt 1}'r,i".",',‘"‘;,'i;T:[];,;j e Up® s 0p7 4 p® a 0p5 +0pA 4 0p3 +0p7 4 Opp 4 0

phvaptt +0p¥ +0p?

0 0 0 0

pé+0ps 1 Op* +0p3 +0p?
pt+ p® +0pt +0p3 + p?

0+ p*+0pt +0p> + p2 +0p
plropl A 0p #0p7 it p

0 + ;1“+0;13 + pa pr0
pt+ p3+0p2+0p +1

0 +p3+ pt+ p+l

Thus the remainder is
Cim o= ptor proap sl
Therefore cheek bits are,

C={111

Therefore the encoded message in systernatic form is given as,

X = (Message bits . Check bits)

X.=11001100:1111

i

Thus there are 12 bits in encoded message.

i} The given 8-bit data is 01011111

Thé corresponding message polynomial s,
Mip) = pbpt Fpt o p? pt+l
Therefare p2 M(p} will be,
piM(p) = prptaptaptept ap il
= P apdap? 4ptap’ +_xr“\

Now let us divide p2M(p) by G(p), then we get,
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Gp) = prapar

pe+p’ +pd +p2ap )
{ii) To obtain the generator matrix in systematic form :

. 2 1
ptap® +1)p0+0p% + P8 pT b pS o pt 4 0p% w Op? 4 0pT +0

ta

. , We have obtained the generator matrix in systematic form for C(p)=p® +p+1in
10 9 ] ?-j- 6 R ., 3 f F P
p i+ p”+0p +0p74p Ex. 3.3.4. It is calculated (sec equation 3.3.52) as,
0 + p%+ p8+ p74+0pb+pS ' P 000:1 ¢ 1]
p?+ p8 +0p? +0p6 +pS 01006 :1 1 1/
0 0  p740p6+0pS+ p*+0p3 Ny “loor o1 g
p7+ p®+0p5 +0pt + p? ot : 0001 :01 7

[ + 0 5 + 4 -+ p3 + Opz
0 +7p 4 P P 2 ER (iii) To determine the code vectors :
- pe+ p°>+0pt +0p3 + p b
. ) 3 2 40p 1) Codevector for M = 1010 i
0+ pP+pt+ p3+ p

2 We know that X = M G. Therefore, \
p5+ P‘ +0p3 +0p* +p .

1 o0o0o:1 0 U
- 0 +0 + pd+ prep - 5 X=po1 ! 0010l
Thus the remainder is, : =1 }0 01 ¢ 1 1 {}jlwll vt [)Q] 1
- Cp) = p? +p+p 0001 :01

Therefore the check bits are,-

c 1110 Observe that the same codevector is obtained for M = 1010 in table 3.3.2, since the

generating polynomial is same.

Therefore message in systematic form will be, 2) Codevecior for M =111 1]

AT R L PRI

X =01011111:1110. 100 0 10 1]
. - 1 |
wsp- Example 3.3.44 ©  Suggest a suitable generator polynomial for a (7, 4) systematic S 01 00: 11 11_ SERERE
cycelic code and find codeveciors for the following data words : 0010:11 0 g ]
' 0 001:01 1

(i) 1010 (if) 1111 (ii) 0001 (iv) 1000. ' ‘
Draw an encoder arrangement for the above code and explain its operation. Con“:u:g :
the decoding table for all single bit error patlerns and deiermine the data veclo .

transmitted for the following received vectors.
(i) 1101101 (ii) 0101000
= Solution :  Given (7, 4) cyclic code. Hence
n=7 k=4
§ = n-k=7-4=3

3) Codevector for M = 0001

|
\
|
1 . 00 : 1 1{
0100:71 1 '
X = 10001 =[000
[ 1, 10:1 1 ’ [0001011)
0 001:01 1
74 " 4) Codevector for M =1000
._ 1 0001 ’
0100:1
X 000
L i JOU]G:I 0
: 0001 :0 1

e =~

[

H

w (I} To obtaln the geneorator polynomla_l :
The generator polynomial will be the factor of (p" +1). ie. o
(p7+1) = (p+1)(p? +p+1)(p® +p? +1) ; : “
- The generator polynomial must be of the degree ‘. As gn;en by abovel thuu: :s‘: .

two generator polynomials are possible : p3 +p+1 and p3 +p2 +1, Hencé le

the generator polynomial, . - : R "

b

]

[1000107]
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iv) Encoder arrangement :
Encoder for C‘(p) p?
it this example,

e
+p +1 is shown in Ex, 3.3.6. Its operation s aIso exphiined ;‘" eé:‘%?

Since the syndrome is nonzero, there is an ercor in the received N~
To determime the :rmr wector

v) Decoding table : From the deceding table 305, siserve that for the syndrome of 5 100 an erron

The decoding table for G(P)=p? +p+1is given in Ex. 33.10 and table 3.3.4,
vi) To decode the given vectors :

i "o decode ¥ =1101101

E= 0000100
To determing the correet codevector

Correct codevector is given as
fo defermine the syndrome g -

Hence the polvnomi i o
* polynomial of received vector will be, protioe@oooioo
= [0 i
}(;;r):;rﬁ-rp5+p3+p2+1 = 1101001 |
Svindrome can be calculated by equati : i .
) X ate . at 3.3. i), Le. is i
¥ equation 62 (a). ie, Note that this is one of the systematic codevector 1n table 3.3.2 for M = | 101,

2) To decode Y = 0101000

G(r). —
o - To determine the syndrome
Let us divide Y (r) by G(p). )
2 1 s Polynomial for this received veclor bocomes,
PReptap s '
e e e ot 4 = it oaond i g
PREOpT ap 1..J s FOptapdwpt L0p vl 3 V() = pr e 0pt o pd i 0pT 4 0p 40
e Let us divide )"{pj Iy Gp) b,
,H”rUp" +ptogpd ‘:-3{ o
T o o E; T
Ry I B R e
. p R ’r?5 tl}'{r" Fp e’
prA0pt 4 pd gp2 ' r
| pt+p® +0p2 +0p - et
Pt 0p? +p2ap : : Thus the remainder is, S(p)=p*+0p+0
:-" ® @ O @ S =1
p3 +p2 rp4l Since the syndrome is nonzero (hern Inan error i the recereed voeoton
P +0p?apal - To determine error vector
LA
p? ' Frem the dec (\ding table 3.3.5, observe that for the syndromio er 5o 0, e e
Thus the - e e o ) ve(lm is, .-
15 the ader s, S(p)=p2. It can be written as, . P
S(p) = p2 0p+0 E= 0000160
S = 100 To determine the correct codevertor
Cotrect coclevector is given as,
X = Y®E
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(0101000) +(0000100) Here =2 Hence PTM(p) WN

0101100 | P"’M(P)='P2(P“'+0P3-+0p’+p‘*+095+0p" PP H0p2 4 p 4 0)
Note that this is one of the systematic code vector in table 3.3.2 for M =0101. & =P+ 0pl 4 0p9 4 ps FO0p7 4+ 0p+p5 4 opi tp?+0p2
The generator polynomial is, Gip)=p? +1
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b Example 3.315 1 Why are cyclic codes effective in detecting error bursts ? The
message 1001001010 s to be transmitted in a cyclic code with a generalor polynomial 240 i3
. ' = +Up 41
s{=at+ 1L : ]
) p9+P}+P6 +pd '-L,""-I—pz +p+l

1) How many check bits does the encoded messave contain 7 _— 2 -
y ; - G PTAOpel PU+0pY 4 0p% 158 10,7 0 P+ 0P Y P 0T Oy

i) Obtain the transmitted codeword, . pil g 0p10 4 p9 .
°© o o

1l Draw encoding arrangement to obtain revminder bits. )

i} After the received word is clocked into the decoder input, what should be the content . Pops 0y .
of the register stores 7 i PO+ 0ps 4 p7 g |
Solution :  §i) To determine number of check bits : & (9 @ & \
To delermine size of the code e T X b -H;?:“.a;_
A T
The given message is, .\ pd 4 0p7 4 pé |
e ’—-—.___.__,.
M = (1001001010) ie k=10 + P74 p s ps |
he generator polynomial is, ‘i p7+0ps +ps
- pi, = s T -
G(p) = p2+1, hence g=2 L;; po +0p5 +0pi
Therefore 1 = = i ”i
Therefore n =k + g =10. Thus this is (12, 10) cyclic code. ::' po 0_,0“5_} o
’ . T — ——
d\‘“u”.'hr.f’ of check bits . ' %"‘r plapd 4 Opt
The encoded message contains 'q" number of check bits. Here g =2 check bits will g P 0pt e
be present . ‘5} —— “_'}___'{f'"_' —
' o piapt s (p
i) To obtain transmitted code word : s P32
+0p? 4+ p
To obtain transmitted codeword we have to perform following steps : o _____r_; 7
o - Pt p 0
a) Divide pt M (p) by G(p) oy
P +0p+1
P+l

b) From remainder determine check bits.
c) Transmitted codeword will be X =M :0O).
a) To divide pi M(p) by G ()
We know that M =(100100101 0) [ ¥ b To delermine check bits
- AR remainder is C(p) =p+]

Hence message polvnomial will be,
L Hence check bits, C (1 1)

M(p} = p?+0p8 +0p7 4 pé 4 0pS +0p* +p3 10p? 4+p+0
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c} To obtain code ward
The sysletnatic cyclic code is given as,
X o= (M:Q)
= 1001001010 11

- e
Check inls

Al

il To draw encoder for ebtaining remainder bits :

The remainder bits are check bits, that are generated by the encoder, The genemtm.

polvnomial is given as,
Gpy = p?+0p=1
and (_’;(p] = plagipl
O comparing above two equations we obtain,

g =0

An encoder can be obtained from Fig. 332 with g=2 and g, =0 It is shown {

TR

Fle(]'\r‘}f

= 4]
no connection

i .
- . [ r
& 2y T
A
heck
\ L_
/—"To transmitter

Message Message
bits input bits

Fig. 3.3.12 Encoder for G(p}=p? +1

The shift register r 7y contains remainder- Bigs™ ¢ “weck bits after all 10 bits of

Bis

niessage are entered.

iv) Contents of register at decoder :
The syndrome register contains syndrome after all bits of received wvector are

clocked into the decoder input. Depending upon the received vector, syndrome s

calculated.

R

|
)
)

” '}“{s’rmhxamp!ﬁ 13..3.1 f:

Errar (‘(mtml - ui; 1g
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(x3 +x? -H), defesntine the data vectors fransmtted for the foliowny recerved vecnes

i 1100101 i) 0101000 iin) 000110

using syndrmme decoding technique. Compare the technique withe wacrem dikelioe)
decision ruie based decoding.

This example can be solved through following steps -

i) Determine generator matrix (G).

i) Determine parity checlt matrix ().

iii) Determine decoding table. .

iv) Determine syndromes for received vectors and obtain correct ttansmttead

vectors,

i) To obtain generator matrix (G) :

The i row of the systematic generator matrix is given as,
prt e R (p) = Qe (i G(p) and =12, 0k
Here, it is given that #=7, k=4 and 4 =t - R

We canowrite above equation as,

Wt 1
LR, )

G(p) ()
prt . Ry (1) S
or = O (p (307
ay G
Note that additions in above eqoatins ae nd-20 Hinee voiv-oo i saipr an

x=y @ z. Here note that £, (p) is the remader obtained by dividing ,rJ” !
a) To obtain polynomial for Kow 1 (1)

With £ = 1, equation 3.3.78 becomes,

pn-! ) Ko
,,,,,,, T
Gy T QUi
With =7 and putting for G{p)+ 1" 1
¢ !
L 3 Qi

pd4+p>+1 B ';-ﬁ'"a

Foe o systematic (7,4Y cyclic code with wencrator palyomnmd

P




